SCIENTIFIC RATIONALE OF THE TECHNOLOGY OF PASTES BASED ON FRESHWATER HYDROBIONTS AND ENRICHED WITH SELENIUM

T. Holovko¹, Candidate of Technical Sciences, Professor
A. Helikh², Candidate of Technical Sciences, Assistant Professor
M. Holovko³, Doctor of Technical Sciences, Professor
V. Prymenko⁴, Candidate of Technical Sciences, Assistant Professor
M. Zherebkin⁵, Candidate of Technical Sciences, Assistant Professor

¹Department of Commodity and Expertise in Customs
Kharkiv State University of Food and Trade,
333 Klochkivska St., Kharkiv, 61051, Ukraine
²Department of Technology of Milk and Meet
Sumy National Agrarian University
160 Kondratieva St., Sumy, 40000, Ukraine
³Department of Commodity and Expertise in Customs
Kharkiv State University of Food and Trade
333 Klochkivska St., Kharkiv, 61051, Ukraine
⁴Department of management and administrating
Autonomous subdivision “Dnipro Faculty of Management and Business of Kyiv University of Culture”
9 M. Hrushevsky str., Dnipro, 49000, Ukraine
⁵Department of physical and mathematical and engineering-technical disciplines
Kharkiv State University of Food and Trade
333 Klochkivska St., Kharkiv, 61051, Ukraine

Abstract. It has been investigated how to use the dietary selenium-protein supplement Neoselen to enrich mussel-based pastes with organic selenium. The formulation of the pastes that has been developed involves the use of the soft body of freshwater mussels of the genus Anodonta. It has been studied how introduction of different percentages of the supplement Neoselen effects on the organoleptic properties of the developed pastes based on freshwater mussels. It has been found that the addition of even more than 5% of Neoselen does not spoil the taste and colour of the pastes developed. The moisture content, moisture-holding and fat-holding capacities, and active acidity of the pastes developed have been studied. By determining the values of plastic viscosity and modulus of elasticity, it has been established how adding different quantities of Neoselen changes the consistency of pastes based on freshwater mussels. The regularities of the influence of Neoselen on the general chemical and mineral composition of pastes based on freshwater mussels have been determined. It has been established that 1%, 3%, or 5% of Neoselen added to the paste can enrich it with 34.8, 50.4, and 66.0 mkg of selenium, respectively. The studies have shown that the quantitative contents of protein, minerals, and water prevail in the composition of both the control and the experimental samples of pastes. The more Neoselen in the formulation of pastes, the higher their protein and mineral content is. The complex of the qualitative characteristics of the pastes developed has been investigated. Regular features have been found in how the composition effects on the sensory, physicochemical, functional, and technological characteristics of forcemeat systems based on freshwater mussels and the supplement Neoselen. It has been established that the optimal quantities of Neoselen in the formulation of pastes range within 3–5%.

Keywords: freshwater mussels, functional products, dietary selenium-protein supplement, pastes.
Introduction. Formulation of the problem

In recent years, the demand for physiological food has increased significantly. The concept of healthy, or rather, health-improving nutrition originated in Japan. Foods that have a physiological effect are those containing nutrients or biologically active substances that boost immunity, and improve physiological processes in the human body. These products help prevent diseases and aging of the body [1].

In our country, the consumption of high-grade proteins has decreased significantly, the balance of the lipid composition in foods is far from rational, and there is a noticeable lack of some minerals and vitamins. In 2018, the underconsumption of complete protein in northern regions of Ukraine was 45.5%, in southern regions 34% [2,3]. A possible way of finding alternative sources of protein is developing technologies of food based on freshwater hydrobionts.

Analysis of recent research and publications

The practice of using freshwater hydrobionts in food technologies throughout the world is considerable.

Modern science finds it possible to use the Nile tilapia as the main fish species cultivated around the world, including Brazil. The study focuses on developing a fish snack technology where minced Nile tilapia is used as the main recipe component. Currently, the sensory and physicochemical characteristics of tilapia-based minced meat and fish snacks have been thoroughly described [4].

Since the 1960s, numerous studies have established the possibility of obtaining fish snacks (snacks, burgers) from minced surimi [5].

Russian scientists studied samples of forcemeat made from the freshwater goldfish, which could be put into production to process unprofitable species of the Volga–Caspian basin and obtain culinary products based on it [6].

Indonesian scientists used the parameter “mixing index” to investigate the effectiveness of mixing minced meat. The samples used were Oreochromis niloticus, Walleye pollack surimi, and a mixture of both [7].

Scientists of the Republic of Korea studied the physicochemical and sensory characteristics of minced meat made with different concentrations of the supplement based on Astragalus membranaceus powder [8].

Brazilian scientists investigated the conditions of convective drying of enzymatically modified paste based on fillets of the fish Engraulis anchoita [9].

Among local freshwater hydrobionts, there is a group of commercial, but not sufficiently exploited species such as the freshwater molluse of the genus Anodonta (hereinafter referred to as freshwater mussel). Its soft body is the perfect raw material for functional foods. The protein it contains is complete as there are all essential amino acids in it [10]. Analysis of the fatty acid composition of the freshwater mussel’s soft body shows that its lipids contain polyunsaturated fatty acids, including ω-6 and ω-3, as well as eicosapentaenoic, docosapentaenoic, and docosahexaenoic fatty acids [11]. Freshwater mussels have been found to contain valuable micro and macronutrients. Investigations have allowed establishing that by microbiological and safety criteria, freshwater mussels comply with the current regulations [12].

It should be noted that quick-frozen food products (fish cutlets, nuggets, and others) are increasingly popular with consumers. All this gives grounds to suggest minced freshwater mussels as a basis for physiological food paste.

One of the promising uses of freshwater mussels is the manufacture of moulded products when various food supplements and components can be added to the forcemeat to improve its sensory, structural, and mechanical qualities and enrich it with essential substances. Among the indispensable nutritional factors necessary to maintain the homeostasis of the human body are mineral compounds. Some of the scarce are selenium compounds. They are potent anticarcinogens, metabolic regulators, components of most hormones and enzymes [13]. A way of implementing this direction of development can be the enrichment of minced freshwater mussels with the dietary selenium-protein supplement (DSPS) Neoselen [14,15]. The technology of the DSPS Neoselen containing organic selenium, which is obtained from interaction of selenium salts and globular whey proteins, has been scientifically substantiated [16]. It has been established that the DSPS Neoselen has a medical and preventive value. Besides, it is an emulsifier of dispersed polycosystem systems. Its introduction into food recipes does not affect the organoleptic properties, increases the emulsion stability, and enriches the body with organic selenium [17].

The purpose of the research is scientific substantiation of the technology of paste based on freshwater hydrobionts and enriched with the dietary selenium-protein supplement.

To achieve this purpose, it is necessary to solve the following objectives:

1. To determine the organoleptic properties of pastes based on freshwater mussels and different concentrations of the DSPS Neoselen.
2. To investigate the water-holding capacity (WHC), fat-holding capacity (FHC), and pH of the paste based on freshwater mussels and different concentrations of the DSPS Neoselen.
3. To determine the rheological properties of the pastes developed, namely the viscosity and elastic modulus.
4. To determine the total physicochemical and mineral composition of the pastes based on freshwater mussels.

To investigate the water-holding capacity (WHC), fat-holding capacity (FHC), and pH of the paste based on freshwater mussels and different concentrations of the DSPS Neoselen.

1. To determine the organoleptic properties of pastes based on freshwater mussels and different concentrations of the DSPS Neoselen.
2. To investigate the water-holding capacity (WHC), fat-holding capacity (FHC), and pH of the paste based on freshwater mussels and different concentrations of the DSPS Neoselen.
3. To determine the rheological properties of the pastes developed, namely the viscosity and elastic modulus.
4. To determine the total physicochemical and mineral composition of the pastes based on freshwater mussels.

To investigate the water-holding capacity (WHC), fat-holding capacity (FHC), and pH of the paste based on freshwater mussels and different concentrations of the DSPS Neoselen.
mussels and different concentrations of the DSPS Neoselen.

5. On the basis of the data received, to substantiate the technology of pastes with the physiological effect.

Research materials and methods

The materials used for the research were freshwater bivalves of the genus *Anodonta*, harvested in the Desna River (the Sumy Region), and the DSPS *Neoselen* TU U (Technical Specifications of Ukraine) 10.8–01566330–329:2018 “Mineral and organic food supplements. Specifications.”

Preparation of the test samples. To prepare freshwater mussel paste, freshwater mussels, after they had been boiled and cooled to 40±1°C, were finely minced for 15 min in a meat cutter with the rate of rotation 2600–2700 s⁻¹. To the resulting paste, we added the DSPS *Neoselen*. Prepared peeled and boiled potatoes and onions, as well as additional flavour components (egg powder, salt, etc.) were added to the total mass of minced freshwater mussels, which was then minced for 5 min more. The resulting paste mass was packed into 1.5–2 kg polystyrene bags and frozen to –18°C. To make pastes, the following ingredients are required (Table 1).

The following experimental pastes were prepared with the DSPS *Neoselen*:
- control (model paste without supplements);
- sample 1 (paste with 1% of *Neoselen*);
- sample 2 (paste with 3% of *Neoselen*);
- sample 3 (paste with 5% of *Neoselen*).

Besides, when mixing the paste components, 1% of the raw materials was lost, and this was taken into account, too. The process flow chart of making paste based on freshwater mussel and enriched with the DSPS *Neoselen* is presented in Fig. 1 (semi-finished product).

The doses of the supplement were calculated taking into account the daily norms of selenium consumption (for men, 70 mcg/day, for women, 55 mcg/day) [18]. Selenium should enter the human body only in organic form. Thus, the risk of poisoning by this trace element is eliminated [19].

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Norm, kg per 100 kg of raw material</th>
<th>Technical regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater mussel meat</td>
<td>70</td>
<td>TU U 10.2–3316908299–001:2014</td>
</tr>
<tr>
<td>Onions</td>
<td>5</td>
<td>DSTU 3234–95</td>
</tr>
<tr>
<td>Black pepper</td>
<td>0.02</td>
<td>DSTU ISO 959–1:2008</td>
</tr>
<tr>
<td>Allspice</td>
<td>0.02</td>
<td>DSTU ISO 2254:2008</td>
</tr>
<tr>
<td>Table salt Eksitra</td>
<td>2.5</td>
<td>DSTU–3583–97</td>
</tr>
<tr>
<td>Powdered eggs</td>
<td>4.0</td>
<td>TU U 15.8–32086437–001:2007</td>
</tr>
<tr>
<td>Potatoes</td>
<td>18.0</td>
<td>DSTU 4506:2005</td>
</tr>
<tr>
<td>Total</td>
<td>100 kg</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 1. Process flow chart of the production of paste based on freshwater mussels and enriched with the DSPS Neoselen](image-url)
100 g of Neoselen contains 0.78±0.1×10−3% of elemental selenium (or 0.78±0.1 mg/100 g of the DSPS), which is present in the supplement in combination with whey proteins. That is, 1g of the DSPS contains 7.8 mcg of organic selenium. Thus, by replacing 1%, 3%, or 5% of the forcemeat system with the DSPS, it is possible to enrich it with 14.8, 30.4, and 46.0 mcg of selenium, respectively. The recommended dosage of Neoselen per 1 kg of the finished product does not exceed 10 g [20].

Research methods. The sensory parameters were evaluated by the profile method using a 5-point scale to analyse the intensity of certain characteristics: appearance, smell, colour, taste, and consistency (juiciness and density). The results were visualised in the form of profile charts.

The total chemical composition was determined by standard methods according to DSTU (State Standard of Ukraine) 8030:2015. Total nitrogen was determined by a method based on the oxidation of organic matter by burning it in sulphuric acid in the presence of a catalyst in a Kjeldahl flask. The nitrogen content was then determined by titration according to Ukrainian State Standard ISO 5983–2003.

The levels of the main micro and macroelements in the paste (iodine, copper, magnesium, sodium, phosphorus, zinc, iron) were determined by atomic absorption spectrophotometry on an atomic absorption spectrophotometer AAS-30 with the appropriate optical filters ISO 90–1:2004. The potassium content was determined with a photoelectric colorimeter KFC-2 according to DSTU ISO 7485–2003.

The shear stress of the test samples was determined with a rotational viscometer Reotest-2 (Russia) for 30 s, at 15°C, with the shear gradient 100 s−1, using an S1 spindle. The effective viscosity was calculated by the formula (Oswald and de Waele equation):

\[
\eta_{\text{eff}} = \frac{\sigma}{\theta},
\]

where \(\eta_{\text{eff}}\) is the effective viscosity, Pa·s;

\(\theta\) is the shear stress, Pa;

\(\gamma\) is the shear rate, (s−1).

The modulus of elasticity was determined with Kargin and Sogolova’s modified scales by studying the compressive deformation of structured systems under the action of a punch with a Teflon attachment.

The modulus of instantaneous elasticity was determined by the formula:

\[
E_d = \sigma/E0
\]

where \(E_d\) is the modulus of instantaneous elasticity, Pa;

\(\sigma\) is the strain put on a sample, Pa;

\(E0\) is the relative conditionally instant deformation.

The mass fraction of moisture was determined in the test samples of pastes with a Chizhov device according to DSTU ISO 6496:2005.

The moisture-holding capacity (MHC) of paste was determined by the gravimetric method. It consists in determining the quantity of water released from the product by light pressing and absorbed by filter paper. The MHC was calculated by the formula:

\[
MHC = 100 - (b - c)\times100/(\alpha\times M)\times100
\]

where MHC is the moisture-holding capacity, %;

\(a\) is the mass of a sample, g;

\(b\) is the mass of the filter paper after pressing and removing the sample portion from it, g;

\(C\) is the mass of the filter paper after pressing, removing the sample portion, and drying, g;

\(M\) is the mass fraction of moisture in the sample, %.

To determine the fat-holding capacity of the pastes (FHC), 5 g portions of the paste was quantitatively transferred to centrifuge tubes, where 30 cm³ of refined sunflower oil was added, stirred for 1 min at the speed of the stirrer 1000 s⁻¹, and rested for 30 min. After resting, the tubes were mixed with centrifuged for 25 min at 3200 s⁻¹, weighed, and drained of the oil above the paste sediment. The tubes were tilted to remove excess fat, and rested for 10 minutes. The test-tubes with the sediment were weighed, and the FHC was calculated by the formula:

\[
FHC = 100 - (b - c)\times100/(\alpha\times b)\times100
\]

where FHC is fat-holding capacity, %;

\(a\) is the weight of the tube with protein and bound oil, g;

\(b\) is the weight of the test-tube with paste, g;

\(c\) is a weighed sample portion of paste, g.

The active acidity of the paste was determined by the potentiometric method on a pH-meter pH-410. A 1g portion of paste was dissolved in 100 ml of distilled water, and 0.1 g of the 0.1–n sodium thiosulphate solution was added.

The standard error and mean values were determined using multiple regression (descriptive statistics in MS Office Excel).

Results of the research and their discussion

Organoleptic studies of the samples of the pastes developed have been carried out. The parameters considered were the taste, smell, colour, and consistency. The profiles of the organoleptic evaluation of the paste are shown in Fig. 2.

The results of the tasting evaluation have shown that the addition of 1% of Neoselen (sample 1) has almost no effect on the sensory characteristics of the pastes. Sample 3 with 5% of Neoselen added has a slight taste of selenium. The freshwater mussel present in the paste in combination with organic flavouring substances of other components results in the formation of original taste sensations. Summarising the results of the tasting, it can be stated that the paste has a delicate smell (characteristic of freshwater fish), taste, colour, and appearance.

The main requirement of the technology of minced meat products is the dispersed state of paste components and the bound state of moisture and fat. So, the moisture content, MHC, and FHC belong to the most important parameters in the paste technology. These functional and technological parameters are presented in Table 2.
Fig. 2. Profiles of the organoleptic evaluation of the paste based on freshwater mussels and enriched with the DSPS Neoselen

Table 2 – Functional and technological properties of pastes (n=5, P≥0.95)

<table>
<thead>
<tr>
<th>Sample</th>
<th>WHC, %</th>
<th>FHC, %</th>
<th>Moisture, %</th>
<th>Active acidity, pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>70.6</td>
<td>72.0</td>
<td>70.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Sample 1</td>
<td>72.3</td>
<td>72.2</td>
<td>72.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Sample 2</td>
<td>73.9</td>
<td>72.7</td>
<td>72.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Sample 3</td>
<td>75.4</td>
<td>72.9</td>
<td>72.7</td>
<td>6.2</td>
</tr>
</tbody>
</table>

The addition of the DSPS Neoselen helps to stabilise forcemeat systems. The studies of model samples of pastes with different concentrations of Neoselen have shown that adding 5% of it has a positive effect on the organoleptic, functional, and technological properties of minced meat. This is evidenced by the highest values of MHC and FHC in sample 3.

The developed pastes based on freshwater mussel and enriched with Neoselen are a plastoviscous system. Its parameters are the plastic viscosity index and the modulus of elasticity. The consistency of the finished paste depends directly on the overall chemical composition and the degree of mincing. For each sample, the value of plastic viscosity has been obtained, and the modulus of elasticity calculated (Table 3).

Samples 1 and 2 have about the same plastic viscosity. The differences in the values of the modulus of elasticity in different minced meat samples can be explained by different contents of Neoselen. The quantitative index of viscosity in all samples shows the rate of the breakdown of the structure: its smallest value in sample 3 indicates that the structure of the sample is least likely to be destroyed, and the most likely is that of sample 1.

Table 3 – Values of structural and mechanical parameters of the pastes (n=5, P≥0.95)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Number of the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Plastic viscosity, Pa.s</td>
<td>0.8</td>
<td>0.04</td>
</tr>
<tr>
<td>Modulus of elasticity, 10^3 Pa.s</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

To study the nutritional value of pastes based on freshwater mussels and enriched with Neoselen, their chemical composition has been analysed. The chemical composition of pastes determines their nutritional and biological value. The general chemical composition of the Neoselen-enriched paste and of the control samples has been studied. The results are presented in Table 4.

The studies have shown that in the composition of both the control and experimental samples of pastes, the largest are the quantities of protein, minerals, and water. The content of protein and mineral substances increases with the increase of the content of the DSPS Neoselen in the paste formulation.
Table 4 – Chemical composition of the pastes (n=5, P>=0.95)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Number of the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mass fraction of, %:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>79.9</td>
<td>78.6</td>
</tr>
<tr>
<td>minerals</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>raw fat</td>
<td>1.1</td>
<td>1.15</td>
</tr>
<tr>
<td>total protein</td>
<td>11.3</td>
<td>11.4</td>
</tr>
<tr>
<td>crude fibre</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>nitrogen-free extractives</td>
<td>5.2</td>
<td>6.15</td>
</tr>
</tbody>
</table>

Mineral substances are especially important for the proper functioning of the body, so it was necessary to determine their content in the composition of Neoselen-enriched pastes based on freshwater mussels (Table 5).

Table 5 – Mineral composition of the pastes (n=5, P>=0.95)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Number of the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Calcium, mg/100 g</td>
<td>110</td>
<td>190</td>
</tr>
<tr>
<td>Phosphorus, mg/100 g</td>
<td>240</td>
<td>350</td>
</tr>
<tr>
<td>Potassium, mg/100 g</td>
<td>290</td>
<td>260</td>
</tr>
<tr>
<td>Sodium, mg/100 g</td>
<td>155</td>
<td>130</td>
</tr>
<tr>
<td>Magnesium, mg/100 g</td>
<td>186</td>
<td>170</td>
</tr>
<tr>
<td>Copper, mg/100 g</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>Manganese, mg/100 g</td>
<td>2.88</td>
<td>3.41</td>
</tr>
<tr>
<td>Zinc, mg/100 g</td>
<td>1.90</td>
<td>0.63</td>
</tr>
<tr>
<td>Iron, mg/100 g</td>
<td>2.3</td>
<td>3.15</td>
</tr>
<tr>
<td>Selenium, mcg/100 g</td>
<td>7</td>
<td>14.8</td>
</tr>
<tr>
<td>Iodine, mcg/100 g</td>
<td>57</td>
<td>55</td>
</tr>
</tbody>
</table>

The data obtained show that the control samples of Neoselen-enriched pastes based on freshwater mussels contain all the basic macro- and microelements, such as calcium, phosphorus, potassium, sodium, magnesium, iron, and selenium. The selenium content in the control samples is 7 mcg/100 g, which satisfies an adult’s daily need for it by almost 10%. And in test sample 3, its content is as high as 46.0 mcg/100 g, which is almost 60% of the recommended daily intake. The data obtained indicate that pastes Neoselen-enriched pastes based on freshwater mussels can be regarded as a product of high biological value.

Conclusion

Thus, the experimental studies confirm the possibility of producing pastes based on freshwater mussel with the addition of the DSPS Neoselen as a product that has a physiological effect. It has been studied how introduction of different percentages of Neoselen effects on the organoleptic properties of the developed pastes based on freshwater mussels. It has been established that the optimum amount of Neoselen in the recipe of pastes is 3% to 5%.

Based on the organoleptic analysis, it has been determined that the paste has a delicate smell (characteristic of freshwater fish), taste, colour, and appearance. The addition of even more than 5% of Neoselen does not spoil the organoleptic properties.

Adding the DSPS Neoselen helps to stabilise forcemeat systems. The studies of model samples of pastes with different concentrations of Neoselen have shown that adding 3% to 5% of it has a positive effect on the functional and technological properties of minced meat. This is evidenced by the increase in MHC and FHC in samples 1 and 3.

With 5% of the DSPS Neoselen in the paste formulation, the system has the best adhesive properties: the viscosity of the paste increases due to an increase in the concentration of solids.

The data obtained make it possible to give scientific reasons for the technology of physiological-activity paste based on freshwater mussels and enriched with the DSPS Neoselen.

References:

Технологія і безпека продуктів харчування / Technology and safety of food products

НАУКОВЕ ОБГРУНТУВАННЯ ТЕХНОЛОГІЇ ПАСТНА ОСНОВІ ПРИСНОВОДНИХ ГІДРОБІОНТІВ, ЗБАГАЧЕНИХ НА СЕЛЕН

Т.М. Головко1, доктор технічних наук, професор, E-mail: golovko.tatyana.10@gmail.com
А.О. Геліх2, кандидат технічних наук, ст. викладач, E-mail:gelิshumy@gmail.com
М.П. Головко1, доктор технічних наук, професор, E-mail: golovko.pal@gmail.com
В.Г. Применко2, кандидат технічних наук, ст. викладач, E-mail:primenklovad@gmail.com
М.В. Жеребкін1, кандидат технічних наук, асистент, E-mail: Zherebkin.maxim@gmail.com

1 Кафедра товарообігу в митні справи
2 Сумський національний аграрний університет
3 Кафедра технології молока і м'яса
4 Східно-Європейський журнал передового технології
5 ВП «Дніпровський факультет менеджменту і бізнесу Київського університету культури»

Анотація.
Досліджено можливість використання добавки дієтичної селену в розроблені паст на основі прісноводних гідробіонтів, забагачених на селен. Розроблено рецептуру паст, передбачає використання м'якого тіла прісноводного молюска роду Anodonta. Досліджено вплив внесення різної відсоткової кількості добавки «Неоселен» на органолептичні та фізико-хімічні властивості розроблених паст. Зі збільшенням вмісту добавки «Неоселен» у рецептурі паст вміст білка, мінеральних речовин та води коливається в межах 32.4, 30.4 та 46.0 мкг селену відповідно. Дослідження показали, що у складі паст, збагачених на селен, вміст білка, мінеральних речовин та води коливається в межах 32.4, 30.4 та 46.0 мкг селену відповідно. Дослідження показали, що у складі паст, збагачених на селен, вміст білка, мінеральних речовин та води коливається в межах 32.4, 30.4 та 46.0 мкг селену відповідно.

Ключові слова: прісноводні молюси, функціональні продукти, добавка дієтична селен-білкова, паста.

Список літератури:

Харчова наука і технологія / Food science and technology 115 Volume 14 Issue 1/ 2020

16. Спосіб одержання біологічно активної добавки «Неоселен»: пат. на корисну модель 104883 Україна: МПК А 23 J 1/20, А 61 К 31/095 / Черевко О.І., Головко М. П., Применко В. Г., Головко Т. М.; власник ХДУХТ. № u201507794; заявл. 05.08.2015; опубл. 25.02.2016, Бюл. № 4.

