Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

Особливості Spirulina platensis при культивуванні в автотрофних та міксотрофних умовах

##plugins.themes.bootstrap3.article.main##

Zahra Rasouli
Mahdi Parsa
Hossein Ahmadzadeh

Анотація

Cultivation of Spirulina platensis in Zarrouk media containing 0–20 g l-1 glucose was studied in a photobioreactor for 30 days using a light intensity of 3 klux. Various parameters were measured to evaluate the enhancement of cell performance with glucose such as cell number, osmolarity, membrane stability, biomass productivity, doubling time, stress intensity, stress tolerance, chlorophyll, protein, carbohydrates, and lipid contents. Based on the results, we concluded that S. platensis is able to grow and produce some ingredients in Zarrouk media containing up to 20 g l-1 of glucose which is the first to be reported. The cell concentration of the mixotrophic cultures (80 cells per mm2) corresponded well to the sum of the autotrophic cell concentrations (50 cells per mm2), showing that the addition of carbohydrate positively effects on the microalgae growth. The continuous operation supplemented with 0.5 g l-1 of glucose (G0.5) led to the maximum cell concentration about 9.06 g l-1 wet and 1.32 g l-1 dry weights. The highest tolerance index, specific growth rate, biomass productivity, cell division, osmolarity and membrane stability index were respectively 102.5%, 0.15 d-1, 0.04 g l-1d-1, 0.26 div d-1, 0.87 osmol kg-1 and 93.8%, obtained in the same treatment. Chlorophyll (6.7 % in G0; 0.046 g l-1 in G0.5), protein (79.9 % and 0.884 g l-1 in G0.5), carbohydrates (55.5% in G20; 0.492 g l-1 in G6) and lipid (53.3% in G10; 0.636 g l-1 in G0) percentages and yields were mostly enhanced in the mixotrophic condition. This study indicated that mixotrophic growth of S. platensis is useful for commercial biomass production.

Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
Rasouli, Z., Parsa, M., & Ahmadzadeh, H. (2019). Особливості Spirulina platensis при культивуванні в автотрофних та міксотрофних умовах. Food Science and Technology, 12(4). https://doi.org/10.15673/fst.v12i4.1178
Розділ
Біопроцеси, біотехнологія харчових продуктів, БАР

Посилання

1. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007; 25 (3): 294-306. DOI: 10.1016/j.biotechadv.2007.02.001.
2. Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge: Cambridge University Press; 1988. P 85-121. DOI: 10.1002/jctb.280470214.
3. Ogawa T, Aiba S. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng. 1981; 23: 1121-32. DOI: 10.1002/bit.260230519.
4. Zhang XW, Zhang YM, Chen F. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem. 1999; 34: 477-481. DOI: 10.1016/S0032-9592(98)00114-9.
5. Marquez FJ, Nishio N, Nagai S, Sasaki K. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Tech Biotech. 1995; 62: 159-64. DOI: 10.1002/jctb.280620208/pdf.
6. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016 May; 3 (7): 546-565. DOI: 10.3389/fmicb.2016.00546.
7. Becker EW. Micro-algae as a source of protein. Biotechnol Adv. 2007; 25: 207-210. DOI: 10.1016/j.biotechadv.2006.11.002.
8. Yokota T, Hizume M, Ohtake T, Takahashi K. A new growth kinetic model for photo-autotrophic microalgae culture. J Chem Eng Jpn. 1994; 27 (3): 399-403. DOI: 10.1252/jcej.27.399.
9. [9] Borowitzka MA. High-value products from microalgae - their development and commercialization. J Appl Phycol. 2013; 25: 743-756. DOI: 10.1007/s10811-013-9983-9.
10. Seyidoglu N, Inan S, Aydin C. Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine. InTechOpen, Rijecka, Croatia; 2017 February. P 254. DOI: 10.5772/66118.
11. Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009 Jan; 3 (4). DOI: 10.1186/1752-0509-3-4.
12. Ogawa, T. and Terui, G. (1972) Growth Kinetics of Spirulina platensis in Autotrophic and Mixotrophic Cultures. In: Terui, G., Ed., Proceedings of IV IFS: Fermentation Technology Today, Society of Fermentation Technology, Osaka, 543-549.
13. Marquez FJ. Reassessment of the bioenergetic yield of Arthrospira platensis using continuous culture. World J Microbiol Biotechnol. 1999; 15: 209-211. DOI: 10.1023/A:1008841605798.
14. Griffiths DJ, Thresher CL, Street HE. The heterotrophic nutrition of Chlorella vulgaris. Ann. Bot. 1960; 24: 1-11. DOI: 10.1093/oxfordjournals.aob.a083682.
15. Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol. 2004; 34: 461-465. DOI: 10.1016/j.enzmictec.2003.12.002.
16. Zarrouk C. Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima Geitler Ph.D. Thesis, University of Paris; 1966.
17. Sullivan CY. Mechanism of heat and drought resistance in grain sorghum and method of measurement. Oxford and IBH publishing company, New Delhi; 1972. P 247-246.
18. Fernández, G.C.J. (1992) Effective selection criteria for assessing plant stress tolerance. Proceedings of the International Symposium on “Adaptation of Vegetables and other Food Crops in Temperature and Water Stress”, Taiwan, 13-16 August 1992, 257-270.
19. Shirazi Kharrazi MA, Naroui Rad MR. Evaluation of sorghum genotypes under drought stress conditions using some stress tolerance indices. African J Biotechnol. 2011; 10 (61): 13086-89. DOI: 10.5897/AJB11.1417.
20. Madkour FF, Kamil AEW, Nasr HS. Production and nutritive value of Spirulina platensis in reduced cost media. Egypt J Aquat Res. 2012; 38: 51-57. DOI: 10.1016/j.ejar.2012.09.003.
21. Moheimani N, Borowitzka M, Isdepsky A, Fon Sing S. Standard methods for measuring growth of algae and their composition. Algae for Biofuels and Energy, Springer, Dordrecht; 2013. P 265-284. DOI: 10.1007/978-94-007-5479-9_16.
22. Marker AFH. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwat biol. 1972; 2 (4): 361-385. DOI: 10.1111/j.1365-2427.1972.tb00377.x.
23. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-254. DOI: 10.1016/0003-2697(76)90527-3.
24. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956; 28 (3): 350-356. DOI: 10.1021/ac60111a017.
25. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959; 37: 911-917. DOI: 10.1139/o59-099.
26. Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng. 1993; 76: 408-410. DOI: 10.1016/0922-338X(93)90034-6.
27. Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol Adv. 2011; 29: 483-501. DOI: 10.1016/j.biotechadv.2011.05.016.
28. Hu B, Min M, Zhou W, Du Z, Mohr M, Chen P, Zhu J, Cheng Y, Liu Y, Ruan R. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour Technol. 2012; 126: 71-79. DOI: 10.1016/j.biortech.2012.09.031.
29. Wang SB, Chen F, Sommerfeld M, Hu Q. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta. 2004; 220: 17-29. DOI: 10.1007/s00425-004-1323-5.
30. Sun N, Wang Y, Li YT, Huang JC, Chen F. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem. 2008; 43: 1288-92. DOI: 10.1016/j.procbio.2008.07.014.
31. Heredia-Arroyo T, Wei W, Hu B. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol. 2010; 162: 1978-1995. DOI: 10.1007/s12010-010-8974-4.
32. Kong W, Song H, Cao Y, Yang HS, Hua S, Xia C. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. J Biotechnol. 2011; 10: 11620-30. DOI: 10.5897/AJB11.617.
33. Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Frontiers in plant science. 2013; 4: 1-18. DOI: 10.3389/fpls.2013.00327.
34. Chen YH, Walker TH. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett. 2011; 33: 1973-1983. DOI: 10.1007/s10529-011-0672-y.
35. Perez-Garcia O, de-Bashan LE, Hernandez JP, Bashan Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J Phycol. 2010; 46: 800-812. DOI: 10.1111/j.1529-8817.2010.00862.x
36. Karsten U. Seaweed acclimation to salinity and desiccation stress. Seaweed Ecophysiology and Ecology, Berlin: Springer Vol 219; 2012. P 87-107. DOI: 10.1007/978-3-642-28451-9_5.
37. Kaplan F, Lewis LA, Wastian J, Holzinger A. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma. 2012; 249: 789-804. DOI: 10.1007/s00709-011-0324-z.
38. Kaplan F, Lewis LA, Herburger K, Holzinger A. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): Effects on photosynthesis and ultrastructure. Micron. 2013; 4: 317-330. DOI: 10.1016/j.micron.2013.08.004.
39. Orosa M, Torres E, Fidalgo P, Abalde J. Production and analysis of secondary carotenoids in green algae. J Appl Phycol. 2000; 12: 553-556. DOI: 10.1023/A:1008173807143.
40. Santos RR, Araújo OQ, Medeiros JL, Chaloub RM. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour Technol. 2016 March; 204: 38-48. DOI: 10.1016/j.biortech.2015.12.077.
41. Barrocal VM, Garcı´a-Cubero MT, lez-Benito GG, Coca M. Production of biomass by Spirulina maxima using sugar beet vinasse in growth media. New Biotechnology. 2010 Dec; 27 (6): 851-6. DOI: 10.1016/j.nbt.2010.07.001.
42. Coca M, Barrocal VM, Lucas S, González-Benito G, García-Cubero MT. Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process. 2015; 94: 306-312. DOI: 10.1016/j.fbp.2014.03.012.
43. Yang C, Hua Q, Shimizu K. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl Microbiol Biotechnol. 2002; 58: 813-822. DOI: 10.1007/s00253-002-0949-0.
44. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water research. 2011; 45: 11-36. DOI: 10.1016/j.watres.2010.08.037.
45. Granum E, Kirkvold S, Myklestad SM. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: duel variations and effects of N depletion. Mar Ecol Prog Ser. 2002; 242: 82-93. DOI: 10.3354/meps242083.
46. Guerrini F, Cangini M, Boni L, Trost P, Pistocchi R. Metabolic responses of the diatom Achnanthes brevipes to nutrient limitation. J Phycol. 2000; 36: 882-890. DOI: 10.1046/j.1529-8817.2000.99070.x.
47. Miao XL, Wu QY. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 2006; 97: 841-846. DOI: 10.1016/j.biortech.2005.04.008.
48. Choi HJ, Yu SW. Comparison of microalgae biomass and lipid content during growth in acorn-glucose and low cost carbon sources under various conditions. Current Biotech. 2015; 4: 523-529. DOI: 10.2174/2211550105666151208211054.
49. Leesing R, Kookkhunthod S, Nontaso N. Microalgal lipid production by microalga Chlorella sp. KKU-S2. Eng Technol. 2013; 52: 499-502.
50. Wan MX, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, et al. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng. 2012; 109: 1958-64. DOI: 10.1002/bit.24477.
51. Zhang X, Rong J, Chen H, He C, Wang Q. Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Res. 2014; 2: 32. DOI: 10.3389/fenrg.2014.00032.
52. Chainapong T, Traichaiyaporn S, Deming RL. Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. J Agr Tech. 2012; 8 (5): 1593-1604.
53. Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J. 2000; 6: 87-102. DOI: 10.1016/S1369-703X(00)00080-2
54. Azma M, Mohamed MS, Mohomad R, Rahim RA, Ariff AB. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J. 2011; 53: 187-195. DOI:10.1016/j.bej.2010.10.010
55. De Swaaf ME, Sijtsma L, Pronk JT. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng. 2003; 81: 666-672. DOI: 10.1002/bit.10513.