Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012



M. Nikolova
T. Prokopov
D. Taneva
N. Dimitrov


The quantity of tomato wastes combined with beneficial characteristics of components of the wastes justifies the great interest of researchers and manufacturers in extracting of carotenoids from this low cost material. In this study the response surface (RSM) approach and Box-Behnken design (BBD) were used to explore the possibility of modelling and optimisation the organic solvent extraction of total carotenoids from Bulgarian tomato processing waste (TPW).  Bulgarian TPW consists of tomato pomace was used in this study. Dried and ground TPW was plased in the extraction flask and stirred with acetone at various extraction conditions. The extract obtained was vacuum filtered through filter paper and was subjected to spectrophotometrically total carotenoids content determination. A three-variable, three-level BBD of RSM was employed in optimisation the extraction conditions for the highest recovery of total carotenoids from Bulgarian TPW. A response surface quadratic model was developed and statistical analysis was carried out. Data concerning model adequacy tests indicated that the values of R2 and Radj2 for quadratic model were the higest in comparison to the other models. The obtained F-value of 38.65 implies the model was significant (p < 0.05) and could be used for optimisation. The effects of extraction temperature, solvent to solid ratio and extraction time were significant in total carotenoids yield. Total carotenoids content ranged from 9.78 to 25.28 mg/100 g dried TPW. The predicted values of total carotenoids content were closed to the experimental observed values. By use of RSM the optimal extraction conditions were determined as follow: extraction time of 90 min, solvent to solid ratio of 60 mL/g and extraction temperature of 50ºC. The results obtained showed that predicted (28.40 mg/100 g dried TPW) and experimental (28.86±0.92 mg/100 g dried TPW) values of total carotenoids content were not significant different (p > 0.05).

Ключові слова:
Для цієї мови відсутні ключові слова


Як цитувати
Nikolova, M., Prokopov, T., Taneva, D., & Dimitrov, N. (2019). ОПТИМІЗАЦІЯ ЕКСТРАГУВАННЯ КАРОТИНОЇДІВ ОРГАНІЧНИМИ РОЗЧИННИКАМИ ІЗ ПРОДУКТІВ ПЕРЕРОБКИ ТОМАТІВ. Food Science and Technology, 13(2).
Хімія харчових продуктів і матеріалів. Нові види сировини


1. Galanakis Ch. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol., 2012; 26:68-87. DOI:10.1016/j.tifs.2012.03003
2. Dubinina A, Letuta T, Frolova T, Seleutina H, Hapoutseva O. Perspectives of the use of plant raw material extracts for storage of tomatoes. Food Science and Technology, 2018; 12(4):43-51. DOI:
3. Al-Wandawi H, Abdel-Rahman M, Al-Shaikhly K. Tomato processing wastes as essential raw material sources. J. Agric. Food Chem., 1985; 33:804-807. DOI:10.1021/jf00065a009
4. Faostat. 2014; available at:
5. Strati I, Oreopoulou V. Effect of extraction parameters on the carotenoid recovery from tomato processing waste. Int. J. Food Sci. Technol., 2011; 46(1):23-29. DOI:
6. Strati I, Oreopoulou V. Recovery of carotenoids from tomato processing by-products – a review. Food Res. Int., 2014; 65:311−321. DOI:10.1016/j.foodres.2014.09.032
7. Zuorro A., Fidaleo M., Lavecchia R. (2011), Enzyme-assisted extraction of lycopene from tomato processing waste, Enzyme Microb. Technol., 49, pp. 567-573. DOI:10.1016/j.enzmictec.2011.04.020
8. Lenucci M, Caroli M, Maresse P, Inrlaro A, Rescot L, Böhm V, et al. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem., 2015; 170:193-202. DOI:10.1016/j.foodchem.2014.08.081
9. Prokopov Т, Nikolova M, Taneva D. Improved carotenoid extraction from Bulgarian tomato peels using ultrasonication. The Annals of the University Dunarea de Jos of Galati, Fascicle VI – Food Technology, 2017; 41(1):41−49. et al.pdf
10. Kumcouglu S, Yalmaz T, Tavman S. Ultrasound-assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol., 2014; 51(12):4102−4107. DOI:10.1007/s13197-013-0926-x
11. Nikolova M, Taneva D, Prokopov T, Hadjikinova M. Influence of genotype and crop year on carotenoids content of peels from Bulgarian tomato cultivars. Ukrainian Food Journal, 2017; 6(3):470-479. DOI:10.24263/2304-974X-2017-6-3-7
12. Nikolova M, Prokopov T, Ganeva D, Pevicharova G. Effect of treatment parameters on the carotenoid extraction from tomato peels of Bulgarian industrial varieties. Journal of Food and Environmental Safety of the Suceava University, 2014; 13(4):283−289.
13. Kaur D, Wani A, Oberoi D, Sogi D. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface. Food. Chem., 2008; 108:711-718. DOI:10.1016/j.foodchem.2007.11.002
14. Altemimi A, Lightfoot D, Kinsel M, Watson D. Employing response surface methodology for optimization of ultrasound assisted extraction of lutein and -carotene from spinach. Molecules, 2015; 20:6611-6625. DOI:10.3390/molecules20046611
15. Ordóñez-Santos L, Pinzón-Zarate L, González-Salcedo L. Optimization of ultrasonic-assited extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrason. Sonochem., 2015; 27:560-566. DOI:10.1016/j.ultsonich.2015.04010
16. Wang X, Wang C, Zhia X, Mei X, Xia J, Jiao Z. Supercritical carbon dioxide extraction of -carotene and -tocopherol from pumpkin: a Box-Behnken design for extraction variables. Anal. Methods, 2017; 9:294-303. DOI:10.1039/C6AY02862D
17. Chalukova M, Manuelyan H. Breeding for Carotenoid Pigments in Tomato. In: Kalloo G., editor. Genetic Improvement of Tomato. Monographs on Theoretical and Applied Genetics. vol 14. Berlin, Heidelberg: Springer; 1991.
18. Box G, Behnken W. Some new three level designs for the study of quantitative variables. Technometrics, 1960; 2(4):455-475. DOI: 10.1080/00401706.1960.10489912