Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

ДОСЛІДЖЕННЯ ФУНКЦІОНАЛЬНИХ ХАРАКТЕРИСТИК ВОДОРОЗЧИННОГО ПОЛІСАХАРИДУ, ВИДІЛЕНОГО З НАСІННЯ BALANGU (LALLEMANTIA ROYLEANA)

##plugins.themes.bootstrap3.article.main##

Maryam Sardarodiyan
Akram Arianfar
Ali Mohamadi San
Sara Naji-Tabasi

Анотація

In this study, the influence of molecular weight (MW) was measured on functional characteristics of Balangu seed (Lallemantia royleana) gum (BSG) fractions. Firstly, BSG fractionated by precipitation method using ethanol basis on MW. Two fractions called precipitate (PER) Balangu and supernatant (SUPER) Balangu were obtained as the highest and lowest MW fractions, respectively. Then the physicochemical properties (uronic acid, protein and molecular weight) were investigated for BSG and fractions. Moreover, the rheological characteristics of BSG and fractions emulsions were determined. The results showed, the value of MW for Balangu, PER-Balangu and SUPER-BSG were 3120 kDa, 6130 kDa and 2050 kDa, respectively. All the emulsions established shear-thinning behavior (1%, w/w). SUPER- Balangu was obtained lower storage moduli (G') and loss moduli (G''), which showed as the best uniform emulsion. The present of high uronic acid content (20.35%) and protein content (10.8%) of SUPER-Balangu led its increase emulsifying activity. PER-Balangu emulsion contains more poly-dispersed oil droplets with larger size which may be due to low protein content (6.03%). According to the results the most uniform emulsion related to SUPER-Balangu which can be a replacement for some of the plant hydrocolloids used in food products.

Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
Sardarodiyan, M., Arianfar, A., Mohamadi San, A., & Naji-Tabasi, S. (2019). ДОСЛІДЖЕННЯ ФУНКЦІОНАЛЬНИХ ХАРАКТЕРИСТИК ВОДОРОЗЧИННОГО ПОЛІСАХАРИДУ, ВИДІЛЕНОГО З НАСІННЯ BALANGU (LALLEMANTIA ROYLEANA). Food Science and Technology, 13(2). https://doi.org/10.15673/fst.v13i2.1398
Розділ
Хімія харчових продуктів і матеріалів. Нові види сировини

Посилання

1. Xie JH., Jin ML., Morris GA., Zha XQ., Chen HQ., Yi Y., Li JE., Wang ZJ., Gao J., Nie SP., Shang P., Xie MY. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr. 2016; 56: S60-S84. DOI: 10.1080/10408398.2015.1069255
2. Hesarinejad MA., Razavi SMA., Koocheki A. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Biol. Macromol. 2015; 81: 418-426. DOI:10.1016/j.ijbiomac.2015.08.019
3. Prajapati VD., Jani GK., Moradiya NG., Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym. 2013; 92: 1685-1699. https://doi.org/10.1016/j.carbpol.2012.11.021
4. Jani GK., Shah DP., Prajapati VD., Jain VC. Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian j. biomed. Pharm., sci. 2009; 4: 309-323.
5. Hesarinejad MA., Sami Jokandan M., Mohammadifar MA., Koocheki A., Razavi SMA., Tutor Ale M., Rezaiyan Attar F. Dependence of concentration and heating-cooling rate on rheological properties of Plantago lanceolata seed mucilage. Int. J. Biol. Macromol. 2017; https://doi.org/10.1016/j.ijbiomac.2017.10.102.
6. Hesarinejad MA., Koocheki A., Razavi SMA. Dynamic rheological properties of Lepidium perfoliatum seed gum: effect of concentration: temperature and heating/cooling rate. Food Hydrocoll. 2014; 35: 583-589. https://doi.org/10.1016/j.foodhyd.2013.07.017
7. Balaghi S., Mohammadifar MA., Zargaraan A., Gavlighi HA., Mohammadi M. Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocoll. 2011; 25: 1775-1784. https://doi.org/10.1016/j.foodhyd.2011.04.003
8. Rafe A., Razavi S. Dynamic viscoelastic study on the gelation of basil seed gum. Int. J. Food Sci. Technol. 2013; 48: 556-563. https://doi.org/10.1111/j.1365-2621.2012.03221.x
9. Salehi F., Kashaninejad M. Effect of Different Drying Methods on Rheological and Textural Properties of Balangu Seed Gum. Drying Technology: An International Journal. 2014; 32 (6): 720-727. https://doi.org/10.1080/07373937.2013.858264
10. Mohammad Amini A., Razavi SMA. Dilute solution properties of Balangu (Lallemantia royleana) seed gum: Effect of temperature, salt, and sugar. Int. J. Biol. Macromol. 2012; 51: 235-243. https://doi.org/10.1016/j.ijbiomac.2012.05.018
11. Razavi SMA., Cui SW., Ding H. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. Int. J. Biol. Macromol. 2016; 83:142-151. DOI: 10.1016/j.ijbiomac.2015.11.076
12. Safa O., Soltanipoor MA., Rastegar S., Kazemi M., Nourbakhsh Dehkordi Kh., Ghannadi A. An ethnobotanical survey on hormozgan province, Iran. Avicenna J Phytomed. 2013; 3: 64-81.
13. Razavi SMA., Alghooneh A., Behrouzian F., Cui SW. Investigation of the interaction between sage seed gum and guar gum: Steady and dynamic shear rheology. Food Hydrocoll. 2016; 60: 67-76. https://doi.org/10.1016/j.foodhyd.2016.03.022
14. Salarbashi D., Tafaghodi M. An update on physicochemical and functional properties of newly seed gums. Int. J. Biol. Macromol. 2018; 119: 1240-1247.
15. Mohammad Amini A. Extraction optimization of Balangu seed gum and effect of Balangu seed gum on the rheological and sensory properties of Iranian flat bread. MSc thesis. Iran: Ferdowsi University of Mashhad. 2007.
16. Francuskiewicz F. Polymer fractionation. Springer. 1994.
17. AOAC. Official methods of analysis of AOAC International. AOAC International. 2005.
18. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Analytical Biochemistry. 1973; 54 (2): 484-9. https://doi.org/10.1016/0003-2697(73)90377-1
19. Naji-Tabasi S., Razavi SMA. New studies on basil (Ocimum bacilicum L.) seed gum: part III–Steady and dynamic shear rheology. Food Hydrocoll. 2015; 67: 243-250. https://doi.org/10.1016/j.foodhyd.2015.12.020
20. Erçelebi E., Kara S., Ibanoglu E. Stability of bitter orange juice-olive oil salad dressings stabilized with polysaccharides. Journal of Food Science and Engineering. 2011; 1: 297.
21. Naji-Tabasi S., Mohebbi M. Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing. J Food Meas Charact. 2015; 9: 110-119.
22. Naji-Tabasi S., Razavi SMA. New studies on basil (Ocimum bacilicum L.) seed gum: Part II- Emulsifying and foaming characterization. Carbohydr. Polym. 2016; 149: 140-150. https://doi.org/10.1016/j.carbpol.2016.04.088
23. McClements DJ. Food emulsions: Principles, practice, and techniques (2nd ed.) Boca Raton, Florida. 2005.
24. Inglett GE., Chen D., Lee S. Rheological properties of barley and flaxseed composites. J. Food Sci. 2013; 4: 41-48.
25. Song K-W., Kim Y-S., Chang G-S. Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fiber Polym. 2006; 7: 129-138.
26. Surh J., Decker EA., McClements DJ. Influence of pH and pectin typeon properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocoll. 2006; 20: 607-618. https://doi.org/10.1016/j.foodhyd.2005.07.004
27. Farahmandfar R., Asnaashari M., Taheri A., Tandis Khosravi Rad, T. Flow behavior, viscoelastic, textural and foaming characterization of whipped cream: Influence of Lallemantia royleana seed, Salvia macrosiphon seed and carrageenan gums. Int. J. Biol. Macromol. 2019; 121: 609-615. https://doi.org/10.1016/j.ijbiomac.2018.09.163
28. Razavi SMA., Taheri H., Quinchia LA. Steady shear flow properties of wild sage (Salvia macrosiphon) seed gum as a function of concentration and temperature. Food Hydrocoll. 2011; 25(3): 451-458. https://doi.org/10.1016/j.foodhyd.2010.07.017
29. Steffe JF. Rheological methods in food process engineering (pp. 17-23). East Lansing, MI: Freeman Press. 1996.
30. Clark AH., Ross-Murphy SB. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 1987; 83: 57-192.
31. Mandala I., Savvas T., Kostaropoulos A. Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. Int J Food Eng. 2004; 64: 335-342. https://doi.org/10.1016/j.jfoodeng.2003.10.018
32. Mezger TG. The Rheology Handbook: for users of rotational and oscillatory rheometers. Vincentz Network. 2006.
33. Hidalgo-Álvarez R. Structure and functional properties of colloidal systems. CRC Press. 2009.
34. Zeynalia M., Naji-Tabasi S., Farahmandfar R. Investigation of Basil (Ocimum bacilicum L.) Seed Gum Properties as Cryoprotectant for Frozen Foods. Food Hydrocoll. 2019; 90: 305-312 https://doi.org/10.1016/j.foodhyd.2018.12.034
35. Morris ER. Shear-thinning of ‘random coil’polysaccharides: characterisation by two parameters from a simple linear plot. Carbohydr. Polym. 1990; 13: 85-96.
36. Sciarini L., Maldonado F., Ribotta P., Pérez G., León, A. Chemical composition and functional properties of Gleditsia triacanthos gum. Food Hydrocoll. 2009; 23: 306-313. https://doi.org/10.1016/j.foodhyd.2008.02.011
37. Lobo LL., Svereika A. Coalescence during emulsification. 2. Role of small molecule surfactants. J. Colloid Interface Sci. 2003; 261: 498-507. https://doi.org/10.1016/S0021-9797(03)00069-9
38. McClements DJ. Food emulsions: principles, practices, and techniques. CRC Press. 2004.
39. Soottitantawat A., Bigeard F., Yoshii H., Furuta T., Ohkawara M., Linko P. Influence of emulsion and powder size on the stability of encapsulated dlimonene by spray drying. Innov. Food Sci. Emerg. Technol. 2005; 6: 107-114. https://doi.org/10.1016/j.ifset.2004.09.003