Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

Досягнення в дослідженні танінової кислоти та її взаємодії з білками і полісахаридами

##plugins.themes.bootstrap3.article.main##

W. Lou
A Bezusov
B. Li
Н. Dubova

Анотація

The purpose of this review was to gain a deeper understanding of tannic acid (TA) and its properties, which could be important for improving the technology of gluten-free food. TA is widely used in agriculture, food, medicine, and other fields due to its unique physiological functions (anti-tumor, anti-oxidation, antibacterial, anti-viral, etc.). It can closely interact with proteins and polysaccharides, which can significantly influence the structure, function, and nutritional properties of compounds. In this article, TA is chosen as a polyphenol model, and the structure of tannins and the degree of their extraction have been considered systematically. Prospective application of interaction between TA and common biological macromolecules have been presented. In this review, different classes of tannins are summarized. Advantages and disadvantages of different methods of extracting tannins have also been described. This review provides detailed information about the mechanisms of interaction of TA with biological macromolecules such as proteins and polysaccharides. Maize, buckwheat, rice flour and starch should be introduced as non-traditional raw materials in production of pasta for people ill with coeliac disease. Pasta dough from unconventional raw materials has non-standard rheological characteristics, and it is difficult to impart good plastic properties to it. That is why, studying the properties of tannins is necessary to improve the technology of gluten-free pasta. However, due to the different nature and composition of proteins, gluten-free foods do not have a network structure. So, they can hold neither water nor starch granules, their prepared dough is loose, with low viscosity, and is not easily moulded. That is why, the use of tannin to form a strong structure when developing a gluten-free pasta technology has become the main purpose of the research. Some potential problems of gluten-free dough processing can be solved by using new technical means. In view of this, the authors put forward the idea of using TА to form cross-links and a strong gluten-free dough structure.

Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
Lou, W., Bezusov, A., Li, B., & DubovaН. (2019). Досягнення в дослідженні танінової кислоти та її взаємодії з білками і полісахаридами. Food Science and Technology, 13(3). https://doi.org/10.15673/fst.v13i3.1452
Розділ
Хімія харчових продуктів і матеріалів. Нові види сировини

Посилання

1. Helal A, Tagliazucchi D, Verzelloni E. Gastro-pancreatic re-lease of phenolic compounds incorporated in a polyphenols-enriched cheese-curd. LWT-Food Science and Technology. 2015;6(2):957-963. DOI:10.1016/j.lwt.2014.10.037
2. Xiao H, Liu B, Mo H et al. Comparative evaluation of tannic acid inhibiting α-glucosidase and trypsin. Food Research International. 2015;76(3):605-610. DOI: 10.1016/j.foodres.2015.07.029
3. Ologhobo AD, Babatunde LF. The effect of processing on the trypsin inhibitor, hemagglutinin, tannic acid and phytic acid contents of seeds of ten cowpea varieties. Journal of Food Processing and Preservation. 1984;8(1):10. DOI: 10.1111/j.1745-4549.1984.tb00683.x
4. He Z, Cheng Z, Kang L et al. Mechanism of adsorption of tannic acid by gelatin and its application to astringency removal of blueberry juice. Food science. 2015;36(1):104-108. DOI:10.7506/spkx1002-6630-201501020
5. Wu Y, Wu L, Meng M et al. Study on removing tannin in chaenomeles speciosa juice by gelatin adsorption. Applied chemical industry. 2014;43(10):1781-1783. http://en.cnki.com.cn/Article_en/CJFDTotal-SXHG201410010.htm
6. Ma M, Luo L, Zeng L. Progress of precipitation mechanism and clarifying technology of green tea beverage. Journal of Food Safety and Quality. 2015; 6(4):1212-1218. http://en.cnki.com.cn/Article_en/CJFDTotal-SPAJ201504023.htm
7. Nic Phiarais, Blaise P. Gluten-free cereal products and beverages. Malting and brewing with gluten-free cereals. Gluten-Free Cereal Products and Beverages. 2008:347-372. DOI: 10.1016/B978-012373739-7.50017-4
8. Niewinski MM. Advances in celiac disease and gluten-free diet. Journal of American Diet Association. 2008;108(4):661-672. DOI: 10.1016/j.jada.2008.01.011
9. Bolwell GP. Plant Polyphenols: Vegetable tannins revisited (1989). By E. Haslam. Chemistry and Pharmacology of Natural Products. Cambridge University Press: Cambridge, Bioessays. 1990;12(9):453-453. DOI:10.1002/bies.950120912
10. Siebert KJ, Troukhanova NV, Lynn PY. Nature of polyphenol-protein interactions. Journal of Agricultural and Food Chemistry. 1996; 44(1):80-85. DOI: 10.1021/jf9502459
11. Soares SI, Gonc?Alves RM, Fernandes I et al. Mechanistic approach by which polysaccharides inhibit α-amylase/procyanidin aggregation. Journal of Agricultural and Food Chemistry. 2009;57(10):4352-4358. DOI:10.1021/jf900302r
12. Damodaran S, Parkin KL,. Fennema O. Fennema’s food chemistry, 4th edn. (CRC Press, Boca Raton, FL). 2008;17-94.
13. Stumpf W, Conn PM. Preiss J. The biochemistry of plants. Bioscience. 1981;138(1):153-153. DOI: 10.1016/0014-5793(82)80429-8
14. Smeriglio A, Barreca D, Bellocco E, et al. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology. 2016. DOI: 10.1111/bph.13630
15. Elsa Brandão, Silva MS, Ignacio García Estévez et al. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydr Polym. 2018;177:77-85. DOI :10.1016/j.carbpol.2017.08.075
16. Qiu C, Huang Y, Li A, et al. Fabrication and characterization of oleogel stabilized by gelatin-polyphenol-polysaccharides nanocomplexes. Journal of Agricultural and Food Chemistry. 2018. DOI: 10.1021/acs.jafc.8b02039
17. Elsa Brandão, Silva MS, Ignacio GarcíaEstévez, et al. The role of wine polysaccharides on salivary protein-tannin interaction: a molecular approach. Carbohydr Polym. 2018;177:77-85. DOI:10.1016/j.carbpol.2017.08.075
18. Qian C. Study on extraction, separation, composition and properties of tannin in rapeseed shell. Huazhong Agricultural University; 2004. DOI:10.7666/d.y661941
19. Woodfolk JA, Hayden, Mary L, Miller, Jeffrey D et al. Chemical treatment of carpets to reduce allergen: A detailed study of the effects of tannic acid on indoor allergens. J Allergy Clin Immunol. 1994;94(1):19-26. DOI: 10.1016/0091-6749(94)90066-3
20. Johnston P, Supercritical fluid science and technology. editor, Penninger JML et al. ; 1989 DOI: 10.1021/bk-1989-0406.fw001
21. Shin J, Lim S, Shin DM et al. The hole blocking effect of 4,4′,4″-trifluorotriazine (tfTZ) in electroluminescent devices. Molecular Crystals & Liquid Crystals Science & Technology, 2001;371(1):431-434. DOI: 10.1080/10587250108024776
22. Jarikov VV, Klubek KP, Liao LS et al. Operating lifetime recovery in organic light-emitting diodes having an azaaromatic hole-blocking/electron-transporting layer. Journal ofApplied Physics. 2008;104(7):4522. DOI: 10.1063/1.2976326
23. Singh S, Kushwaha J. Tannic acid adsorption/desorption study onto/from commercial activated carbon. Desalination and Water Treatment. 2014;52(16-18):3301-3311. DOI:10.1080/19443994.2013.802259
24. Choi JW, Chung SG, Hong SW et al. Development of an environmentally friendly adsorbent for the removal of toxic heavy metals from aqueous solution. Water Air and Soil Pollution. 2012;223(4):1837-1846. DOI: 10.1007/s11270-011-0988-1
25. Chang MY, Juang RS. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci. 2004;278(1):18-25. DOI: 10.1016/j.jcis.2004.05.029
26. Üçer A. Uyanik A, Aygün. ŞF. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology. 2006;47(3):113-118. DOI: 10.1016/j.seppur.2005.06.012
27. Ti LI, Yong-Nian NI, Li LI. Separation and purification process of total flavonoids of mistletoe with macroporous resins. Food Science. 2008. http://en.cnki.com.cn/Article_en/CJFDTotal-SPKX200802009.htm
28. Venkata MS, Karthikeyan J. Removal of lignin and tannin colour from aqueous solution by adsorption onto activated chareoal. Environmental Pollution. 1997;97(l-2):183-187. DOI :10.1016/s0269-7491(97)00025-0
29. Liao XP, Shi B. Selective removal of tannins from medicinal plant extracts using a collagen fiber adsorbent. Journal of the Science of Food & Agriculture. 2005;85(8):1285-1291. DOI:10.1002/jsfa.2114
30. Huang J, LiuY, Wang Xingguo.Seleetive adsorption of tannin from flavonoids by organieally modified attapulgite clay. Journal of Hazardous materials. 2008;160(2-3):382-387. DOI:10.1016/j.jhazmat.2008.03.008
31. Thomas H, Arne G, Bernd S et al. Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose, castalagin, and grandinin. Journal of Agricultural and Food Chemistry. 2006;54(25):9503-9509. DOI: 10.1021/jf062272c
32. Lipin´Ska L, Klewicka E, Sojka M. Structure, occurrence and biological activity of ellagitannins: a general review. Acta Scientiarum Polonorum Technologia Alimentaria. 2014;13(3):289-299. DOI:10.17306/J.AFS.2014.3.7
33. Wang B, Heinonen M. Protein-tannin interactions of tryptic digests of alpha-lactalbumin and procyanidins. Journal of Agricultural and Food Chemistry. 2017; 65(1):148-155. DOI:10.1021/acs.jafc.6b04256
34. Seyoum Y, Retta N, Baye K. Nutrient retention and fate of iron-binding phenolic compounds during the injera processing of tannin-free and high-tannin sorghum. Journal of the Science of Food and Agriculture. 96(5):1541-1547. DOI:10.1002/jsfa.7246
35. Pesis E, Ruth BA. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. Journal of Food Science. 1984; 49(3):4. DOI:10.1111/j.1365-2621.1984.tb13236.x
36. Chen X. Biological activity of plant tannins and its application in animal feed. Guangdong Feed. 2016;(12). DOI:10.3969/j.issn.1005-8613.2016.12.010
37. He Z, Zhang P. Physiological function of tannic acid and its research progress in livestock and poultry production. Hunan Feed. 2018. http://www.cnki.com.cn/Article/CJFDTotal-HNLC201801018.htm
38. Ozdal T, Capanoglu E, Altay F. A Review on protein-phenolic interactions and associated changes. Food Research International. 2013;51(2):954-970. DOI:10.1016/j.foodres.2013.02.009
39. Beveridge T, Wrolstad R E. Haze and cloud in apple juices. Critical R eviews in Food Science and Nutrition. 1997;37(1):75-91. DOI :10.1080/10408399709527768
40. Esteruelas M, Kontoudakis N, Gil M, et al. Phenolic compounds present in natural haze protein of Sauvignon white wine. Food Research International. 2011;44(1):77-83. DOI:10.1016/j.foodres.2010.11.010
41. Wu L, Lu Y. Electrophoretic method for the identification of a haze-active protein in grape seeds. Journal of agricultural and food chemistry. 2004; 52(10):3130-3135. DOI:10.1021/jf0352982
42. Miedl M, Garcia M A, Bamforth C W. Haze formation in model beer systems. Journal of agricultural and food chemistry. 2005;53(26):10161-10165. DOI:10.1021/jf0506941
43. Asano K, Ohtsu K, Shinagawa K et al. Turbidity formed in beer at low temperatures. Affinity of proanthocyanidins and their oxidation products for haze-forming proteins of beer and the formation of chill haze. Agricultural and Biological Chemistry. 1984; 48(5):1139-1146. DOI:10.1271/bbb1961.48.1139
44. McMurrough I, Hennigan GP, Loughrey M J. Contents of simple, polymeric and complexedflavanols in worts and beers and their relationship to haze formation. Journal of the Institute of Brewing. 1983; 89(1):15-23. DOI: 10.1002/j.2050-0416.1983.tb04137.x
45. Bordenave N, Hamaker B R, Ferruzzi MG. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food and function. 2014; 5(1):18-34. DOI:10.1039/C3FO60263J
46. Le Bourvellec C, Renard CMGC. Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Critical reviews in food science and nutrition. 2012;52(3):213-248. DOI: 10.1080/10408398.2010.499808
47. Liu F, Ma C, Wang D et al. Advances in the interaction between protein and polyphenols. Food and Fermentation Industry. 2016;42(2):282-288. DOI:10.13995/j.cnki.11-1802/ts.201602048
48. McManus JP, Davis KG, Beart JE et al. Polyphenol interactions. Part 1. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides. Journal of the Chemical Society, Perkin Transactions 2. 1985;(9):1429-1438. DOI:10.1007/978-1-4684-7511-1_21
49. Vernhet A, Pellerin P, Prieur C et al. Charge properties of some grape and wine polysaccharide and polyphenolic fractions. American Journal of Enology and Viticulture. 1996;47(1):25-30. DOI:10.1007/BF00223387
50. De Freitas V, Carvalho E, Mateus N. Study of carbohydrate influence on protein-tannin aggregation by nephelometry. Food Chemistry. 2003;81(4):503-509. DOI:10.1016/s0308-8146(02)00479-x
51. Sun-Waterhouse D, Sivam AS, Cooney J et al. Effects of added fruit polyphenols and pectin on the properties of finished breads revealed by HPLC/LC-MS and size-exclusion HPLC. Food Research International. 2011;44(9):3047-3056. DOI :10.1016/j.foodres.2011.07.022
52. Rovaletti MML, Benítez EI, Amezaga NMJM et al. Polysaccharides influence on the interaction between tannic acid and haze active proteins in beer. Food Research International. 2014;62:779-785. DOI: 10.1016/j.foodres.2014.03.017
53. Goldstein JL, Swain T. The inhibition of enzymes by tannins. Phytochemistry. 1965;4:185-192. DOI: 10.1016/S0031-9422(00)86162-2
54. Ozawa T, Lilley TH et al. Polyphenol interaction: astringency and the loss of astringency in ripening fruit. Hytochemistry. 1987;26:2937-2942. DOI :10.1016/s0031-9422(00)84566-5
55. Perchellet JP, Gali HU, Perchellet EM et al. Antitumor-promoting activities of tannic acid, ellagic acid, and several gallic acid derivatives in mouse skin. Basic Life Sciences. 1992;59:783. DOI:10.1007/978-1-4615-3476-1_47
56. Kakkar P, Verma S, Manjubala I, et al. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Materials Science & Engineering C. 2014;45:343-347. DOI:10.1016/j.msec.2014.09.021
57. Johnson G, Donnelly BJ, Johnson DK. The chemical nature and precursors of clarified apple juice sediment. Journal of Food science. 1968,33:254-257. DOI:10.1111/j.1365-2621.1968.tb01361.x
58. Soares S, Mateus N, De Freitas V. Carbohydrates inhibit salivary proteins precipitation by condensed tannins. Journal of Agricultural and Food Chemistry. 2012;60:3966-3972. DOI:10.1021/jf3002747
59. Harbertson JF, Yuan C, Mireles MS et al. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments. Food chemistry. 2013;138(1):556-563. DOI:10.1016/j.foodchem.2012.10.141
60. Wei Y, Bo LI , Xiang XU et al. Advance in research on the structural and function characteristics of noncovalent interactions of protein,polyphenol and polysaccharide. Science & Technology of Food Industry, 2017;38(17):329-334. http://www.en.cnki.com.cn/Article_en/CJFDTotal-SPKJ201717064.htm