Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

PROSPECTS OF USING GLUCOSE-FRUCTOSE SYRUP IN THE RIBOFLAVIN BIOTECHNOLOGY

##plugins.themes.bootstrap3.article.main##

V. Polishchuk
http://orcid.org/0000-0002-1284-584X
O. Dugan
http://orcid.org/0000-0001-5594-6088

Анотація

Riboflavin is an important vitamin widely used in the food industry to enrich food and as a colourant. An important problem in the implementation of the riboflavin biotechnology is selecting rational, i. e. low-cost and technologically simple sources of carbon and nitrogen. It can significantly increase the efficiency of this technology. Fungi of the genus Eremothecium are known to be capable of synthesising aromatic substances. Studying the level of essential oil accumulation in the carbon and nitrogen sources suggested will allow creating technologies for the simultaneous production of riboflavin and essential oil. The object of study was the ascomycete Eremothecium ashbyi Guillierm. F-340. The biosynthetic activity of the selected producer strain of riboflavin on media with different carbon and nitrogen sources has been studied, as well as the composition of a rational growth medium to achieve the maximum riboflavin accumulation when culturing the strain, and the producer’s ability to synthesise aromatic compounds on this medium. It has been shown how various carbon and nitrogen sources influence biomass accumulation and riboflavin synthesis by the strain E. ashbyi F-340. Monosaccharides (fructose, galactose) and hexatomic alcohol sorbitol have been found to be best suited for the maximum riboflavin accumulation. The best source of nitrogen was yeast extract. The data obtained prove the effectiveness of glucose-fructose syrup with the fructose content 8–12% on a dry basis (GFS-10). It has been shown that the largest vitamin amount (140 mg/dm3) is synthesised when using GFS-10. Wide-ranging variation in the content of the synthesised essential oil has been revealed, the most of it being observed in the medium containing GFS-10 (273–453 mg/dm3) as a carbon source. The use of GFS-10 has made it possible to increase the riboflavin yield by 6.7 times as compared to the medium with glucose, and by 3.7 times as compared to the medium with fructose. The yield of essential oil has increased by a factor of 5. The data obtained can be considered a prerequisite of optimising the nutrient medium

Ключові слова:
riboflavin, Eremothecium ashbyi, carbon and nitrogen sources, glucose-fructose syrup, essential oil

##plugins.themes.bootstrap3.article.details##

Як цитувати
Polishchuk, V., & Dugan, O. (2020). PROSPECTS OF USING GLUCOSE-FRUCTOSE SYRUP IN THE RIBOFLAVIN BIOTECHNOLOGY. Food Science and Technology, 14(2). https://doi.org/10.15673/fst.v14i2.1512
Розділ
Біопроцеси, біотехнологія харчових продуктів, БАР

Посилання

1. Skurikhin IM, Tutelian VA, editor. Khimicheskii sostav rossiiskikh pishchevykh produktov: Spravochnik. Moskva: DeLi print; 2002.
2. Kalingan AE, Liao CM. Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyi NRRL 1363. Bioresour. Technol. 2002;82(3):219-224. https://doi.org/10.1016/S0960-8524(01)00194-8.
3. Pujari V, Chandra TS. Statistical optimization of medium components for improved synthesis of riboflavin by Eremothecium ashbyі. Bioprocess. Biosyst. Eng. 2000;23(3):303-307. https://doi.org/10.1007/PL00009127.
4. Cheng X, Zhou J, Huang L, Li KT. Improved riboflavin production by Eremothecium ashbyii using glucose and yeast extract. Afr. J. Biotechnol. 2011;10(70):15777-15782. https://doi.org/10.5897/AJB11.986.
5. Hryhorenko OM. Rol vitaminiv u kharchuvanni liudyny. Kharchova nauka i tekhnolohiia. 2010;3(12):33-36.
6. Nakaz MOZ Ukrainy vid 03.09.2017 № 1073 Pro zatverdzhennia Norm fiziolohichnykh potreb naselennia Ukrainy v osnovnykh kharchovykh rechovynakh i enerhii. Ofitsiinyi visnyk Ukrainy vid 07.11.2017;87:72, stattia 2658, kod akta 87770/2017.
7. Pro zatverdzhennia pereliku kharchovykh dobavok, dozvolenykh dlia vykorystannia u kharchovykh produktakh. Kabinet Ministriv Ukrainy; Postanova, Perelik vid 04.01.1999 № 12.
8. Shpichka AI, Semenova EF. Marketinhovyi analiz razrabotki biotekhnolohii eremotetsevoho masla kak innovatsionnoi tekhnolohii sovremennoho efiromaslichnoho proizvodstva. Nauchnoe obozrenie. Biolohicheskie nauki. 2016;5:28-49.
9. Semenova E, Shpichka A, Presnyakova E, Presnyakova V, Goncharov M, Goncharov D. Development of a Novel Biotechnological Fragrant Product, Eremothecium Oil. Indian. J. Pharm. Educ. Res. 2017;51(3):327-329. https://doi.org/10.5530/ijper.51.3s.40.
10. Dobreva A, Velcheva A, Bardarov V, Bardarov K. Chemical composition of different genotypes oil – bearing roses. Bulg. J. Agric. Sci. 2013;19(6):1213-1218.
11. Kovacheva N, Rusanov K, Atanassov I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol. Biotechnol. Equip. 2010;24(2):1793-1798. https://doi.org/10.2478/V10133-010-0032-4.
12. Pohorelskaia AN, Buhorskii PS, Semenova EF. O biosinteze komponentov efirnoho masla hribom Eremothecium ashbyi (strukturno–funktsionalnye osobennosti). Vestnik Rossiiskoi akademii s.-kh. nauk. 2003;1:83-85.
13. Semenova EF, Shpichka AI, Moiseeva IYa. About essential oils biotechnology on the base of microbial synthesis. Eur. J. Nat. Hist. 2012;4:29-31.
14. Semenova EF, Shpichka AI, Presniakova EV. Nakoplenie aromaticheskoho i monoterpenovykh spirtov shtammami Eremothecium ashbyi s razlichnym urovnem riboflavinoheneza. Prikladnaia biokhimiia i mikrobiolohiia. 2017;53(3):333-340. https://doi.org/10.7868/S055510991703014X.
15. Semenova EF, Shpichka AI, Moiseeva IYa. Kulturalno-morfolohicheskie i fizioloho-biokhimicheskie osobennosti vidov roda Eremotecium S.F.Ashby et W.Nowell. Fundamentalnye issledovaniia. 2011;6:210-214.
16. Shpichka AI, Semenova EF. Kharakteristika aromaproduktov Eremothecium i perspektyvy ikh ispolzovaniia. Kurskii nauchno-prakticheskii vestnik "Chelovek i eho zdorove". 2014;2:103-106.
17. Semenova EF, Shpichka AI. O metodicheskikh aspektakh selektsii produtsentov efirnoho masla rozovoho napravleniia zapakha. Vestnik Voronezhskoho hosuniversiteta. Seriia «Khimiia. Biolohiia. Farmatsiia». 2014;2:91-95.
18. Polishchuk VYu, Duhan OM. Suchasni mozhlyvosti otrymannia efirnoi olii z aromatom troiandy. Naukovi visti NTUU «KPI». 2016;3:69-77. https://doi.org/10.20535/1810-0546.2016.3.64976.
19. Drobot VI, Sylchuk TA, Udvorheli LI, Bondarenko YuV, Talanov OB. Hliukozno-fruktoznyi syrop – perspektyvnyi naturalnyi zaminnyk tsukru. Khranenie i pererabotka zerna. 2006;9(87):38-39.
20. Bohdanov ES. Hliukozno-fruktoznyi sirop – novyi produkt na pishchevom rynke Ukrainy. Produkty & inhridienty. 2007;2:83-87.
21. Tkachenko LV, Protsan NV, Horshunov YuV, Duhan OM. Efektyvni drizhdzhi dlia spyrtovoho zbrodzhuvannia hliukozo-fruktoznoho syropu. Visnyk ahrarnoi nauky Prychornomoria. 2011;4(1):210-215.
22. Dudka IA, et al. Metody eksperimentalnoi mikolohii: Spravochnik. Kyev: Nauk. Dumka; 1982.
23. Ostrovskii YuM, editor. Eksperimentalnaia vitaminolohiia (spravochnoe rukovodstvo). Minsk: Nauka i tekhnika; 1979.
24. Shpichka AI, Semenova EF, Kuznetsova AV. K voprosu opredeleniia riboflavina v biotekhnolohycheskom syre. Sovremennye problemy nauki i obrazovaniia. 2011;1:30-32.
25. Polishchuk VYu, Duhan OM. Vplyv umov kultyvuvannia na biosyntetychnu zdatnist Eremothecium ashbyi Guillierm. Tekhnolohichnyi audyt ta rezervy vyrobnytstva. 2016;2/4(28):35-41. https://doi.org/10.15587/2312-8372.2016.65470.
26. Semenova EF. Biosinteticheskaia aktivnost i antimikrobnye svoistva Eremothecium ashbyi Guill. Izvestiia vysshikh uchebnykh zavedenii. Povolzhskii rehion. 2007;4:44-50.