Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

СУЧАСНІ ТЕНДЕНЦІЇ У ВИРОБНИЦТВІ ФЕРМЕНТОВАНИХ М’ЯСНИХ ПРОДУКТІВ

##plugins.themes.bootstrap3.article.main##

L. Vinnikova
https://orcid.org/0000-0002-6106-1785
V. Mudryk
https://orcid.org/0000-0001-9761-3636
L. Agunova
https://orcid.org/0000-0002-6708-7396

Анотація

Роботу присвячено узагальненню й аналізу основних проблем виробництва ферментованих м’ясопродуктів, відображених в наукових публікаціях фахівців м’ясопереробної галузі. Сучасні  дослідження науковців у всьому світі присвячено досягненню біо- та мікробіологічної безпеки, структуроутворенню, використанню нових видів сировини, особливостям кольороутворення, формуванню сенсорних властивостей, підвищенню біологічної цінності сирокопчених і сиров’ялених виробів. У роботі підкреслено, що якість готової продукції та стабільність проведення технологічного процесу залежать від якості сировини, властивостей власної мікробіоти сировини та/або внесених стартових культур мікроорганізмів. Висвітлено можливість покращення санітарного стану сировини і зменшення впливу патогенних мікроорганізмів за рахунок використання ультразвуку, гідростатичного високого тиску, високоінтенсивного пульсуючого електричного поля, холодної плазми. Також, окрім фізичних методів обробки, ефективним є використання конкуруючої мікрофлори, екстрактів пряно-ароматичних рослин, комбінування солильних сумішей, пакування. Вказано, що формування структури готової продукції залежить від параметрів проведення технологічного процесу, діяльності екзо- та ендоферментів та рецептурного складу. Відображено, що колір ферментованих м’ясопродуктів і його стабільність залежать від вмісту природних пігментів та умов їхньої взаємодії з нітритами під дією мікроорганізмів з нітритредуктазною активністю і рН середовища. Відмічено можливість отримання характерного рожево-червоного кольору м’ясопродуктів без використання нітритів. Наведено результати досліджень можливості варіювання органолептичних показників готової продукції за рахунок моделювання інгредієнтного складу та умов ферментації. Висвітлено можливість створення нових видів ферментованих м’ясопродуктів функціонального призначення за рахунок введення до їх складу ω-3 жирних кислот, пробіотиків, макро-, мікроелементів тощо.

Ключові слова:
м’ясні продукти, ферментація, стартові культури, безпека, колір, біологічна цінність

##plugins.themes.bootstrap3.article.details##

Як цитувати
Vinnikova, L., Mudryk, V., & Agunova, L. (2019). СУЧАСНІ ТЕНДЕНЦІЇ У ВИРОБНИЦТВІ ФЕРМЕНТОВАНИХ М’ЯСНИХ ПРОДУКТІВ. Food Science and Technology, 13(4). https://doi.org/10.15673/fst.v13i4.1556
Розділ
Хімія харчових продуктів і матеріалів. Нові види сировини

Посилання

1. Mataragas M, Bellio A, Rovetto F, Astegiano S, Decastelli L, Cocolin L. Risk-based control of food-borne pathogens Listeria monocytogenes and Salmonella enterica in the Italian fermented sausages Cacciatore and Felino. Meat Sci. 2015 May; 103:39 -45. https://doi.org/10.1016/j.meatsci.2015.01.002
2. De Souza Barbosa M, Todorov SD, Ivanova I, Chobert J-M, Haertlé T, De Melo Franco BDG. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 2015 Apr; 46:254 -262. https://doi: 10.1016/j.fm.2014.08.004
3. Nieto-Lozano JC, Reguera-Useros JI, Peláez-Martıń ez MC, Hardisson de la Torre AH. Bacteriocinogenic activity from starter culture used in Spanish meat industry. Meat science. 2002; 62(2):237-243. https://doi: 10.1016/S0309-1740(01)00252-2
4. Zhu M, Du M, Cordray J, Ahn DU. Control of Listeria monocytogenes Contamination in Ready-to-Eat Meat Products. Compr Rev Food Sci Food Saf. 2005 Nov; 4(2):34-42. https://doi.org/10.1111/j.1541-4337.2005.tb00071.x
5. Cocolin L, Manzano M, Cantoni C, Comi G. Denaturing Gradient Gel Electrophoresis Analysis of the 16S rRNA Gene V1 Region To Monitor Dynamic Changes in the Bacterial Population during Fermentation of Italian Sausages. Appl Environ Microbiol. 2001 Nov; 67(11):5113-5121. https://doi.org/10.1128/AEM.67.11.5113–5121.2001
6. Cocolin L, Manzano M, Aggio D, Carlo C, Comi G. A novel polymerase chain reaction (PCR) – Denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages. Meat Science. 2001 May; 58(1):59-64. https://doi.org/10.1016/s0309-1740(00)00131-5
7. Comi G, Urso R, Iacumin L, Rantsiou K, Cattaneo P, Cantoni C, Cocolin L. Characterisation of naturally fermented sausages produced in the North East of Italy. Meat Sci. 2005 Mar; 69(3):381-392. https://doi.org/10.1016/j.meatsci.2004.08.007
8. Ieresko HO, Lyzova VIu, Voitsekhivska LU, Starchevoi OM. Udoskonalennia tekhnolohii vyrobnytstva fermentovanykh kovbas z vykorystanniam kompozytsiinykh dobavok. Visnyk ahrarnoi nauky. 2007; 6:66-69.
9. Työppönen S, Petäjä E, Mattila-Sandholm T. Bioprotectives and probiotics for dry sausages. Int J Food Micro-biol. 2003 Jun; 83(3):233- 244. https://doi.org/10.1016/s0168-1605(02)00379-3
10. El Adab S, Essid I, Hassouna M. Microbiological, biochemical and textural characteristics of a tunisian dry fermented poultry meat sausage inoculated with selected starter cultures. J Food Saf. 2015 Dec; 35(1):75-85. https://doi.org/10.1111/jfs.12164
11. Kordowska-Wiater M, Stasiak D. Effect of ultrasound on survival of Gram-negative bacteria on chicken skin surface. Bull Vet Inst in Pulawy. 2011 Jan; 55(2):207-210.
12. Piñon MI, Alarcon-Rojo AD, Renteria AL, Mendez G, Janacua-Vidales H. Reduction of microorganisms in marinated poultry breast using oregano essential oil and power ultrasound. Acta Alimentaria. 2015 Dec; 44(4):527-533. https://doi.org/10.1556/066.2015.44.0024
13. Martín-Sánchez AM, Chaves-López C, Sendra E, Sayas E, Fenández-López J, Pérez-Álvarez JÁ. Lipolysis, proteolysis and sensory characteristics of a Spanish fermented dry-cured meat product (salchichón) with oregano essential oil used as surface mold inhibitor. Meat Science. 2011 Sept; 89(1):35-44. https://doi.org/10.1016/j.meatsci.2011.03.018
14. World Health Organization (WHO). Mycotoxins [Internet]. Geneva: WHO; 2018. Available from: https://www.who.int/news-room/fact- sheets/detail/mycotoxins
15. Andrade MJ, Thorsen L, Rodríguez A, Córdoba JJ, Jespersen L. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. Int J Food Microbiol. 2014 Jan; 170:70-77. https://doi.org/10.1016/j.ijfoodmicro.2013.11.004
16. Andrade MJ, Peromingo B, Rodríguez M, Rodríguez A. Effect of cured meat product ingredients on the Penicillium verrucosum growth and ochratoxin A production. Food Control. 2019 Feb; 96:310-317. https://doi.org/10.1016/j.foodcont.2018.09.014
17. Jin S-K, Shin D-K, Hur I-C. Effects of Moisture Content on Quality Characteristics of Dry-Cured Ham during Storage. Korean J Food Sci Anim Resour. 2011 Oct; 31(5):756-762. http://dx.do.org/10.5851/kosfa.2011.31.5.756
18. Coma V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008 Jan-Feb; 78(1–2):90-103. https://doi.org/10.1016/j.meatsci.2007.07.035
19. Campos CA, Gerschenson LN, Flores SK. Development of Edible Films and Coatings with Antimicrobial Activity. Food Bioprocess Technol. 2011 Aug; 4:849-875. https://doi.org/10.1007/s11947-010-0434-1
20. Amaro-Blanco G, Delgado-Adámez J, Martín MJ, Ramírez R. Active packaging using an olive leaf extract and high pressure processing for the preservation of sliced dry-cured shoulders from Iberian pigs. Innov Food Sci Emerg Technol. 2018 Feb; 45:1-9. https://doi.org/10.1016/j.ifset.2017.09.017
21. Ferreira M, Almeida A, Delgadillo I, Saraiva J, Cunha Â. Susceptibility of Listeria monocytogenes to high pressure processing: A review. Food Reviews International. 2016; 32(4):377-399. http://dx.doi.org/10.1080/87559129.2015.1094816
22. Clariana M, Guerrero L, Sárraga C, Díaz I, Valero Á, García-Regueiro JA. Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innov Food Sci Emerg Technol. 2011 Oct; 12(4):456–65. https://doi.org/10.1016/j.ifset.2010.12.008
23. Pérez-Baltar A, Serrano A, Bravo D, Montiel R, Medina M. Combined Effect of High Pressure Processing with Enterocins or Thymol on the Inactivation of Listeria monocytogenes and the Characteristics of Sliced Dry-cured Ham. Food Bioprocess Technol. 2019 Feb; 12(2):288-297. https://doi.org/10.1007/s11947-018-2212-4
24. Marcos B, Aymerich T, Guàrdia MD, Garriga M. Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat science. 2007 May; 76:46-53. https://doi.org/10.1016/j.meatsci.2006.09.020
25. Toepfl S, Siemer C, Saldaña-Navarro G, Heinz V. Overview of Pulsed Electric Fields Processing for Food. Emerg Technol Food Process (Second editional). 2014 Jan; 93-114. https://doi.org/10.1016/B978-0-12-411479-1.00006-1
26. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, et all. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int. 2015 Nov; 77:773-798. https://doi.org/10.1016/j.foodres.2015.09.015
27. Mosqueda-Melgar J, Elez-Martinez P, Raybaudi-Massilia R, Martin-Belloso O. Effects of Pulsed Electric Fields on Pathogenic Microorganisms of Major Concern in Fluid Foods: A Review. Critical reviews in food science and nutrition. 2008 Aug; 48(8):747-759. https://doi.org/10.1080/10408390701691000
28. Faridnia F, Ma QL, Bremer PJ., Burritt DJ, Hamid N, Oey I. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innovative Food Science & Emerging Technologies. 2015 May; 29:31-40. https://doi.org/10.1016/j.ifset.2014.09.007
29. Cummins EJ, Lyng JG, editors. Emerging Technologies in Meat Processing: Production, Processing and Technology. John Wiley & Sons; 2016.
30. Fernández A, Noriega E, Thompson A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology. 2013 Feb; 33(1):24-29. https://doi.org/10.1016/j.fm.2012.08.007
31. Noriega E, Shama G, Laca A, Díaz M, Kong MG. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology. 2011 Oct; 28(7):1293-1300. https://doi.org/10.1016/j.fm.2011.05.007
32. Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology. 2014 Sept; 42:109 -116. https://doi.org/10.1016/j.fm.2014.02.007
33. Toldrá F, Nollet LML, editors. Advanced Technologies for Meat Processing. 2nd Edition. Boca Raton. London, New York: Taylor & Francis Group; 2017.
34. Smith TA. Amines in food. Food Chemistry. 1981 March; 6(3):169-200. https://doi.org/10.1016/0308-8146(81)90008-X
35. Santos MHS. Biogenic amines: their importance in foods. International Journal of Food Microbiology. 1996 Apr; 29(2 -3):213-231. https://doi.org/10.1016/0168-1605(95)00032-1
36. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal. 2011 Oct; 9(10):2393 [93 pp.] https://doi.org/10.2903/j.efsa.2011.2393
37. Feiner G. Meat products handbook : practical science and technology. Cambridge, England: Woodhead Publishing; 2006.
38. Wójciak KM, Stasiak DM, Stadnik J, Ferysiuk K, Kononiuk A. The influence of sonication time on the biogenic amines formation as a critical point in uncured dry-fermented beef manufacturing. International Journal of Food Science & Technology. 2019; 54:75-83. https://doi.org/10.1111/ijfs.13906
39. Bover-Cid S, Schoppen S, Izquierdo-Pulido M, Vidal-Carou M. Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Science. 1999 Apr; 51(4):305-311. https://doi.org/10.1016/S0309-1740(98)00120-X
40. Barrière C, Centeno D, Lebert A, Leroy-Sátrin S, Berdaguá JL, Talon R. Roles of superoxide dismutase and catalase of Staphylococcus xylosus in the inhibition of linoleic acid oxidation. FEMS Microbiology Letters. 2001 June; 201(2):181 -185. ttps://doi.org/10.1111/j.1574-6968.2001.tb10754.x
41. Barriere C, Leroy-Setrin S, Talon R. Characterization of catalase and superoxide dismutase in Staphylococcus carnosus 833 strain. Journal of Applied Microbiology. 2001 Apr; 91(3):514-519. https://doi.org/10.1046/j.1365-2672.2001.01411.x
42. Magrinyà N, Bou R, Tres A, Rius N, Codony R, Guardiola F. Effect of Tocopherol Extract, Staphylococcus carnosus Culture, and Celery Concentrate Addition on Quality Parameters of Organic and Conventional Dry-Cured Sausages. Journal of Agricultural and Food Chemistry. 2009 Oct; 57(19):8963-8972. https://doi.org/10.1021/jf901104h
43. Rohlík B-A, Pipek P, Pánek J. The effect of natural antioxidants on the colour and lipid stability of paprika salami. Czech J. Food Sci. 2013; 31(4):307-312. https://doi.org/10.17221/327/2012-CJFS
44. Klabukova DL, Kolotvina SV, Titov EI, Mashenczeva NG. Izuchenie vliyaniya kompoziczii startovy`kh kul`tur na uroven` kholesterina v fermentirovanny`kh myasny`kh produktakh. Voprosy` pitaniya. 2017; 86(8):82-90.
45. Vinnikova LG. Tekhnolohiya myasnykh produktov. Teoreticheskie osnovy i prakticheskie rekomendatsii. Kiev: Osvita Ukrayini; 2017.
46. Saccani G, Fornelli G, Zanardi E. Characterization of Textural Properties and Changes of Myofibrillar and Sarcoplasmic Proteins in Salame Felino During Ripening. International Journal of Food Properties. 2013 May; 16(7):1460-1471. https://doi.org/10.1080/10942912.2011.595027
47. Van’t Hooft B-J. Development of binding and structure in semi-dry fermented sausages: a multifactorial approach. Summary. Utrecht University; 1999.
48. Ruiz-Ramírez J, Arnau J, Serra X, Gou P. Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Science. 2005 Aug; 70(4):579-587. https://doi.org/10.1016/j.meatsci.2005.02.007
49. Spaziani M, Torre MD, Stecchini ML. Changes of physicochemical, microbiological, and textural properties during ripening of Italian low-acid sausages. Proteolysis, sensory and volatile profiles. Meat Science. 2009 Jan; 81(1):77-85. https://doi.org/10.1016/j.meatsci.2008.06.017
50. Hughes M, Kerry J, Arendt E, Kenneally P, McSweeney P L, O’Neill E. Characterization of proteolysis during the ripening of se mi-dry fermented sausages. Meat Science. 2002 Oct; 62(2):205-216. https://doi.org/10.1016/S0309-1740(01)00248-0
51. Ibañez C, Quintanilla L, Cid C, Astiasarán I, Bello J. Dry fermented sausages elaborated with Lactobacillus plantarum-staphylococcus carnosus. Part II: Effect of partial replacement of NaCl with KCl on the proteolytic and insolubilization processes. Meat Science. 1997 July; 46(3):277-284. https://doi.org/10.1016/S0309-1740(97)00022-3
52. Molly K, Demeyer D, Johansson G, Raemaekers M, Ghistelinck M, Geenen I. The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project. Food Chemistry. 1997 August; 59(4):539-545. https://doi.org/10.1016/S0308-8146(97)00004-6
53. Katsaras K, Budras K-D. Microstructure of fermented sausage. Meat Science. 1992; 31(2):121-34. https://doi.org/10.1016/0309- 1740(92)90032-Y
54. Toldrá F, Reig M. Innovations for healthier processed meats. Trends in Food Science & Technology. 2011 Sept; 22(9):517 -522. https://doi.org/10.1016/j.tifs.2011.08.007
55. Gøtterup J, Olsen K, Knøchel S, Tjener K, Stahnke LH, Møller JKS. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities. Meat Science. 2008 Apr; 78(4):492-501. https://doi.org/10.1016/j.meatsci.2007.07.023
56. Møller JKS, Jensen JS, Skibsted LH, Knöchel S. Microbial formation of nitrite-cured pigment, nitrosylmyoglobin, from metmyoglobin in model systems and smoked fermented sausages by Lactobacillus fermentum strains and a commercial starter culture. European Foo d Research and Technology. 2003 March; 216(6):463-469. https://doi.org/10.1007/s00217-003-0681-8
57. Kim T-K, Kim Y-B, Jeon K-H, Park J-D, Sung J-M, Choi H-W, et al. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin. Korean Journal for Food Science of Animal Resources. 2017 Feb; 37(1): 105-113. http://dx.doi.org/10.5851/kosfa.2017.37.1.105
58. Nollet LM, Toldrá F, Benjakul S, Paliyath G, Hui YH. Food biochemistry and food processing. John Wiley & Sons; 2012.
59. Wakamatsu J, Nishimura T, Hattori A. A Zn–porphyrin complex contributes to bright red color in Parma ham. Meat Science. 2004 May; 67(1):95-100. https://doi.org/10.1016/j.meatsci.2003.09.012
60. Wakamatsu J, Odagiri H, Nishimura T, Hattori A. Quantitative determination of Zn protoporphyrin IX, heme and protoporphyrin IX in Parma ham by HPLC. Meat Science. 2009 May; 82(1):139-142. https://doi.org/10.1016/j.meatsci.2008.12.011
61. Wakamatsu J, Okui J, Ikeda Y, Nishimura T, Hattori A. Establishment of a model experiment system to elucidate the mechanism by which Zn–protoporphyrin IX is formed in nitrite-free dry-cured ham. Meat Science. 2004 Oct; 68(2):313-317. https://doi.org/10.1016/j.meatsci.2004.03.014
62. De Maere H, Jaros M, Dziewięcka M, De Mey E, Fraeye I, Sajewicz M, Paelinck H, Kowalska T. Determination of hemin, protoporphyrin ix, and zinc (II) protoporphyrin IX in parma ham using thin layer chromatography. Journal of Liquid Chromatography & Related Technologies. 2014; 37(20):2971-2979. https://doi.org/10.1080/10739149.2014.906995
63. De Maere H, Chollet S, De Brabanter J, Michiels C, Paelinck H, Fraeye I. Influence of meat source, pH and production time on zinc protoporphyrin IX formation as natural colouring agent in nitrite-free dry fermented sausages. Meat Science. 2018 Jan; 135:46-53. https://doi.org/10.1016/j.meatsci.2017.08.024
64. Kim HJ, Sung NY, Yong HI, Kim H, Lim Y, Ko KH, et al. Mutagenicity and immune toxicity of emulsion-type sausage cured with plasma-treated water. Korean journal for food science of animal resources. 2016 Aug; 36(4):494-498. https://doi.org/10.5851/kosfa.2016.36.4.494
65. Jung S, Kim HJ, Park S, Yong HI, Choe JH, et al. Color developing capacity of plasma-treated water as a source of nitrite for meat curing. Korean journal for food science of animal resources. 2015 Oct; 35(5):703-706. https://doi.org/10.5851/kosfa.2015.35.5.703
66. Yong HI, Park J, Kim H-J, Jung S, Park S, et al. An innovative curing process with plasma-treated water for production of loin ham and for its quality and safety. Plasma Processes and Polymers. 2017; 15(2): 1-9. e1700050, https://doi.org/10.1002/ppap.201700050
67. Wójciak KM, Krajmas P, Solska E, Dolatowski ZJ. Application of acid whey and set milk to marinate beef with reference to quality parameters and product safety. Acta Sci. Pol. Technol. Aliment. 2015 Oct-Dec; 14(4):293-302. https://doi.org/10.17306/J.AFS.2015.4.30
68. Wójciak KM, Dolatowski ZJ. Effect of acid whey on nitrosylmyoglobin concentration in uncured fermented sausage. LWT – Food Science and Technology. 2015; 64(2):713-719. http://dx.doi.org/10.1016/j.lwt.2015.06.009
69. Møller JK, Jensen JS, Olsen MB, Skibsted LH, Bertelsen G. Effect of residual oxygen on colour stability during chill storage of sliced, pasteurised ham packaged in modified atmosphere. Meat Science. 2000 April; 54(4):399-405. https://doi.org/10.1016/S0309- 1740(99)00116-3
70. Marco A, Navarro JL, Flores M. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dr y fermented sausage. Meat Science. 2006 Aug; 73(4):660-673. DOI:10.1016/j.meatsci.2006.03.011
71. Casaburi A, Aristoy M-C, Cavella S, Di Monaco R, Ercolini D, et al. Biochemical and sensory characteristics of traditional fermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures. Meat Science. 2007 June; 76(2):295 -307. https://doi.org/10.1016/j.meatsci.2006.11.011
72. Aro Aro JM, Nyam-Osor P, Tsuji K, Shimada K, Fukushima M, Sekikawa M. The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chemistry. 2010 March; 119(1):279-285. https://doi.org/10.1016/j.foodchem.2009.06.025
73. Zhao L, Jin Y, Ma C, Song H, Li H, Wang Z, et al. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices. Meat Science. 2011 Aug; 88(4): 761-766. https://doi.org/10.1016/j.meatsci.2011.03.010
74. Waade C, Stahnke LH. Dried sausages fermented with staphylococcus xylosus at different temperatures and with different ingredient levels. Part IV. Amino acid profile. Meat Science. 1997 May; 46(1):101-114. https://doi.org/10.1016/S0309-1740(96)00089-7
75. Wang X, Zhou P, Cheng J, Chen Z, Liu X. Use of straw mushrooms (Volvariella volvacea) for the enhancement of physicochemical, nutritional and sensory profiles of Cantonese sausages. Meat Science. 2018 Dec; 146:18 -25. https://doi.org/10.1016/j.meatsci.2018.07.033
76. Soto AM, Garcia ML, Selgas MD. Technological and Sensory Properties of Calcium-Enriched Dry Fermented Sausages: A Study of the Calcium Bioavailability. Journal of Food Quality. 2016 Oct; 39(5):476-486. https://doi.org/10.1111/jfq.12223
77. Ruusunen M, Puolanne E. Reducing sodium intake from meat products. Meat Science. 2005 Jul; 70(3):531-541. https://doi.org/10.1016/j.meatsci.2004.07.016
78. Dos Santos BA, Campagnol PCB, da Cruz AG, Morgano MA, Wagner R, Pollonio MAR. Is There a Potential Consumer Market for Low-Sodium Fermented Sausages? Journal of Food Science. 2015 March; 80(5):1093-1099. https://doi.org/10.1111/1750-3841.12847
79. Corral S, Salvador A, Flores M. Salt reduction in slow fermented sausages affects the generation of aroma active compounds. Meat Science. 2013 March; 93(3):776-785. https://doi.org/10.1016/j.meatsci.2012.11.040
80. Blesa E, Aliño M, Barat JM, Grau R, Toldrá F, Pagán MJ. Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts. Meat Science. 2008 Jan-Feb; 78(1-2):135-142. https://doi.org/10.1016/j.meatsci.2007.07.008
81. Guarner F, Aamir G. Khan AG, Garisch J, Eliakim R, Gangl A, et al. Probiotyky ta prebiotyky. World Gastroenterology Organization [Internet]. 2008 [cited 2019 Mar 13]. Available from: http://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-russian- 2008.pdf
82. Erkkilä S, Petäjä E, Eerola S, Lilleberg L, Mattila-Sandholm T, Suihko M-L. Flavour profiles of dry sausages fermented by selected novel meat starter cultures. Meat Science. 2001 June; 58(2):111-116. https://doi.org/10.1016/S0309-1740(00)00135-2
83. Klingberg TD, Axelsson L, Naterstad K, Elsser D, Budde BB. Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. International Journal of Food Microbiology. 2006 Jan; 105(3):419-431. https://doi.org/10.1016/j.ijfoodmicro.2005.03.020
84. Hettiarachchy NS, Sato K, Marshall MR, Kannan A. Bioactive food proteins and peptides: applications in human health. Boca Raton: CRC Press; 2011.
85. Owusu-Apenten R. Bioactive Peptides. Boca Raton: CRC Press; 2010.
86. Nollet L. M. L., Toldrá F. Advanced technologies for meat processing. 1st Edition. CRC Press; 2006.
87. Mudgil D., Barak S. Functional foods: sources and health benefits. Jodhpur, India: Scientific Publishers; 2017.
88. Garcia-Iniguez de Ciriano M, Larequi E, Rehecho S, Calvo MI, Cavero RY, Navarro-Blasco I, et al. Selenium, iodine, omega-3 PUFA and natural antioxidant from melissa officinalis L.: A combination of components from healthier dry fermented sausages formulation. Meat Science. 2010 Jun; 85(2):274-279. https://doi.org/10.1016/j.meatsci.2010.01.012
89. Valencia I, Ansorena D, Astiasarán I. Nutritional and sensory properties of dry fermented sausages enriched with n−3 PUFAs. Meat Science. 2006 Apr; 72(4):727-733. https://doi.org/10.1016/j.meatsci.2005.09.022
90. Josquin NM, Linssen JPH, Houben JH. Quality characteristics of Dutch-style fermented sausages manufactured with partial replacement of pork back-fat with pure, pre-emulsified or encapsulated fish oil. Meat Science. 2012 Jan; 90(1):81-86. https://doi.org/10.1016/j.meatsci.2011.06.001