Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012



Asiye Ahmadi-Dastgerdi


The risk of foodborne diseases and consumers’ desire to avoid synthetic food preservatives have drawn researchers’ attention to natural food preservatives such as essential oils that have antimicrobial qualities. Spoilage of foods by fungi is another major problem, especially in developing countries. The purpose of this study was to evaluate the effectiveness of Achillea millefolium essential oil as a natural food preservative in high-fat and low-fat mayonnaise kept at 4°C for 6 months. The mayonnaise samples were divided into four experimental groups treated differently, namely: EO (essential    oil    added    in    the    concentrations    0.45,    2.41, and

7.2 mg/cm3), BS (sodium benzoate and potassium sorbate added in the concentration 0.75 mg/cm3), Cmo (control: no preservative, only microorganisms added), and C (control: no preservative and no microorganisms added). The results have shown that essential oil obtained from Achillea millefolium acts upon all tested microorganisms in mayonnaise, and prevents the growth of all pathogens and fungi, whereas in the control samples, all the microorganisms grew. The maximum cell counts of bacteria and fungi in low-fat mayonnaise were approximately lower than those in high-fat mayonnaise, and the resistance to inactivation of microorganisms was greater in high-fat mayonnaise than in low-fat mayonnaise (p<0.05). Also, the BS samples exhibited antimicrobial properties against the tested species of microorganisms during storage. As essential oil from Achillea millefolium allows controlling the development of foodborne pathogens and food spoilage organisms, it can be used as a natural preservative in the food industry, in particular, in mayonnaise production.


Ключові слова:
Для цієї мови відсутні ключові слова


Як цитувати
Хімія харчових продуктів і матеріалів. Нові види сировини


1. Manios S, Lambert R, Skandamis PA. Generic model for spoilage of acidic emulsified foods: Combining physicochemical data, diversity and levels of specific spoilage organisms. Int J. Food Microbiol. 2014;170: 1-11.
2. Tayfur M, Cakır S, Orkun T, Ercan A, Yabanc N. Microbial quality of retail mayonnaise-based salads. African. J. microbiol Res. 2013; 20:2269-2273.
3. Xiong R, Xie G, Edmondson AS. The fate of Salmonella enteritidis PT4 in home-made mayonnaise papered with citric acid. Lett Appl microbiol. 1999; 28:36-40. •
4. Hayouni EA, Chraief I, Abedrabba M, Bouix M, Leveau JY, Mohammed H, Hamdi M. Tunisian Salvia officinalis L. and Schinusmolle
L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. International. J. Food Microbiol. 2008; 125:242-251.
5. Leuschner RGK, Zamparini J. Effects of spices on growth and survival of Escherichia coli 0157 and Salmonella enterica serovar Enteritidis in broth model systems and mayonnaise. Food Control. 2002; 13:399-404.
6. Silva L, Melo Franco BDG. Application of oregano essential oil against salmonella enteritidis in mayonnaise salad. Int J. Food Sci Nutr Eng. 2012; 2(5):70-75.
7. Roller S, Covill N. The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads. J. Food Prot. 2000; 63(2):202-209.
8. Roufegari Nejad L, Adeli Milani M, Ghasemi Afshar P. Evaluation of the composition and antimicrobial properties of Mentha piperita L. leaf powder in Italian salad dressing. J. Appl Environ Biol Sci. 2015; 5(11):151-156.
9. Djenane D, Yangüela J, Roncalés P, Aider M. Use of essential oils as natural food preservatives: effect on the growth of salmonella enteritidis in liquid whole eggs stored underabuse refrigerated conditions. J. Food Research. 2013; 2(3).
10. Rhee MS, Lee SY, Dougherty RH, Kang DH. Antimicrobial effects of mustard flour and acetic acid against Escherichia coli O157:H7, Listeria monocytogene sand Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol. 2003; 69(5):2959-2963.
11. Erickson J, Stamer J, Hayes M, Mckenna D, Van Alstine L. An Assessment of Escherichia coli 0157:H7 Contamination Risks in Commercial Mayonnaise from Pasteurized Eggs and Environmental Sources, and Behavior in Low-pH Dressings. J. Food Prot. 1995; 58(10):1059-1064.
12. Gomez-Lucia E, Goyache JA, Orden J, Domenech A, Javier Hernandez F, Ruiz-Santa-Quiteria J, Suarez G. Influence of Temperature of Incubation on Staphylococcus aureus Growth and Enterotoxin Production in Homemade Mayonnaise. J. Food Prot. 1990; 53(5):386-390.
13. Smittle RB. Microbiological Safety of Mayonnaise, Salad Dressings, and Sauces Produced in the United States: A Review. J. Food Prot. 2000; 63(8):1144-1153.
14. Wallis-Audra A. Inhibition of Spoilage Yeasts using Spice Essential Oils and Their Components. Master Thesis. 2008.
15. Hathcox A, Beuchat L, Doyle M. Death of entero hemorrhagic Escherichia coli O157:H7 in real mayonnaise and reduced-calorie mayonnaise dressing as influenced by initial population and storage temperature. Appl Environ Microbiol. 1995; 61(12):4172-4177.
16. Macwan SR, Dabhi BK, Aparnathi KD, Prajapati JB. Essential oils of herbs and spices: their antimicrobial activity and application in preservation of food. Int J. Curr Microbiol App Sci. 2016; 5(5):885-901.
17. Sahari MA, Asgari S. Effects of plants bioactive compounds on foods microbial spoilage and lipid oxidation. Food Sci Technol. 2013; 1(3):52-61.
18. Krisch J, Tserennadmid R, Vágvölgyi C. Essential oils against yeasts and moulds causing food spoilage. Science against microbial pathogens: communicating current research and technological advances. A. Méndez-Vilas (Ed.). 2017.
19. Sinaeyan S, Sani AM. Antimicrobial Activity of Ziziphora clinopodioides essential oil and extract on Salmonella enterica, Staphylococcus aureus and Saccharomyces cerevisiaein low fat mayonnaise. BTAIJ. 2014; 10(24).
20. Ahmadi-Dastgerdi A, Ezzatpanah H, Asgary S, Dokhani S, Rahimi E. Phytochemical, Antioxidant and Antimicrobial Activity of the Essential Oil from Flowers and Leaves of Achillea millefolium subsp. millefolium. J. Essent Oil Bear Plants. 2017; 20:395-409.
21. Georgieva L, Gadjalova A, Mihaylova D, Pavlov A. Achillea millefolium L. phytochemical profile and in vitro antioxidant activity. Int Food Res J. 2015; 22:1347-1352.
22. Sevindik E, TugbaAbac Z, Yamaner C, Ayvaz M. Determination of the chemical composition and antimicrobial activity of the essential oils of Teucriumpolium and Achillea millefolium grown under North Anatolian ecological conditions. Biotechnol Biotechnol Equip. 2016; 30:375-380.
23. Ahmadi-Dastgerdi A, Ezzatpanah H, Asgary S, Dokhani S, Rahimi E, Gholami-Ahangaran A. Oxidative Stability of Mayonnaise Supplemented With Essential Oil of Achillea Millefolium Ssp Millefolium During Storage. Food Science and Technology. 2019; 13(1):34-41. doi:
24. Perales I, Garcia SM. The influence of pH and temperature on the behavior of Salmonella enteritidis phage type 4 in home-made mayonnaise. Lett Appl Microbiol. 1990; 10:19-22.
25. Raghubeer E, Ke J, Campbell M, Meyer R. Fate of Escherichia coli 0157:H7 and Other Coliforms in Commercial Mayonnaise and Refrigerated Salad Dressing. J. Food Prot. 1994; 58(1):13-18.
26. Yolmeh M, Habibi Najafi MB, Farhoosh R, Salehi F. Modeling of antibacterial activity of annatto dye on Escherichia coli in mayonnaise. Food Biosci. 2014; 88(13).
27. Hwang C, Marmer B. Growth of Listeria monocytogenes in egg salad and pasta salad formulated with mayonnaise of various pH and stored at refrigerated and abuse temperatures. Food Microbiol. 2007; 24:211-218.
28. Glass KA, Doyle MP. Fate of Salmonella and Listeria monocytogenes in commercial, reduced-calorie mayonnaise. J. Food Prot. 1991; 54:691-695.
29. Smith-Palmer A, Stewart J, Fyfe L. The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol. 2001; 18:463-470.
30. Weagant S, Bryant J, Bark D. Survival of Escherichia coli 0157:H7 in Mayonnaise and Mayonnaise-Based Sauces at Room and Refrigerated Temperatures. J. Food Prot. 1994; 57(7): 629-631.
31. Whiting RC, Buchanan RL. Development of a quantitative risk assessment model for Salmonella enteritidis in pasteurized liquid eggs. Int J. Food Microbiol. 1997; 36:111-125.
32. Lock JL, Board RG. The fate of Salmonella enteritidis PT4 in deliberately infected commercial mayonnaise. Food Microbiol. 1994; 11:499-504.
33. Lock JL, Board RG. The fate of Salmonella enteritidis PT4 in home-made mayonnaise prepared from artificially inoculated eggs. Food Microbiol. 1995; 12:181-186.
34. Buchanan RL, Edelson SG, Boyd G. Effects of pH and acid resistance on the radiation resistance of enterohemorrhagic Escherichia coli.
J. Food Prot. 1999; 62:219-228.
35. del Portillo FG, Foster JW, Finlay BB. Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun. 1993; 61:4489-4492.
36. Gordon J, Small PLC. Acid resistance in enteric bacteria. Infect Immun. 1993; 61:364-367.
37. Leyer GJ, Johnson EA. Acid adaptation induces crossprotection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol. 1993; 59:1842-1847. 0099-2240/93/061842-06$02.00/0
38. Miller LG, Kaspar CW. Escherichia coli 0157:H7 acid tolerance and survival in apple cider. J. Food Prot. 1994; 57:460-464.
39. Junkins AD, Doyle MP. Demonstration of exopolysaccharide production by enterohemorrhagic Escherichia coli. Curro Microbiol. 1992; 25:9-17.
40. Mcdermid A, Mckee A, Dowsett A, Marsh P. The effect of environmental pH on the physiology and surface structure of Salmonella serotype Enteritidis phage type 4. J. Med Microbiol. 1997 45(6): 452-8.
41. Adeli Milani M, Mizani M, Ghavami M, Eshratabadi P. Comparative analysis of antimicrobial characteristics of mustard paste and powder in mayonnaise. Eur J. Exp Biol. 2014; 4(2):412-418.
42. Roberts AK. The effect of sorbic acid on the survival of Escherichia coli 0157:H7, Salmonella, Listeria monocytogenes, and
Staphylococcus aureus on shredded cheddar and mozzarella cheese. Thesis Master. 2002.
43. Liewen MB, Marth EH. Inhibition of Penicillia and Aspergilli by potassium sorbate. J. Food Prot. 1984; 47:554-556.
44. Mendonca AF. Mechanism of inhibitory action of potassium sorbate in Escherichia coli. Aubrey Francis Mendonca. Retrospective Thesis and Dissertations. 1992.
45. Stanojevic D, Comic L, Stefanovic O, Solujic-Sukdolak Sl. Antimicrobial effects of sodium benzoate, sodium nitrite and potassium sorbate and their synergistic action in vitro. Bulgarian J. Agri Sci. 2009; 15(4):307-311.
46. Holley RA, Patel D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005; 22:273-292.
47. Solomakos N, Govaris A, Koidis P, Botsoglou N. The antimicrobial effect of thyme essential oil, nisin and their combination against
Escherichia coli O157:H7 in minced beef during refrigerated storage. Meat Sci. 2008; 80:159–166. doi: 10.1016/j.meatsci.2007.11.014.
48. Kisko G, Roller S. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiology. 2005; 5:36-40.
49. Souza EL, Stamford TLM, Lima EO, Trajano VN, Filho JMB. Antimicrobial effectiveness of spices: An approach for use in food conservation systems. Brazi Arch Biol Technol. 2005; 48:549-558.
50. Zhao T, Doyle MP. Fate of enterohemorrhagic Escherichia coli O157:H7 in commercial mayonnaise. J. Food Prot. 1994; 57:780-783.