Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

ЛІПІДИ МОЛОКА ТА СУБКЛІНІЧНИЙ МАСТИТ

##plugins.themes.bootstrap3.article.main##

V. Danchuk
https://orcid.org/0000-0003-2156-1758
V. Ushkalov
http://orcid.org/0000-0001-5694-632X
S. Midyk
http://orcid.org/0000-0002-2682-2884
L. Vygovska
https://orcid.org/0000-0001-6745-5753
O. Danchuk
http://orcid.org/0000-0002-9226-1499
V. Korniyenko
https://orcid.org/0000-0003-0403-7727

Анотація

Дана стаття стосується процесу одержання якісної молочної сировини за рахунок аналізування її ліпідного складу. Ліпідний склад молока-сировини залежить від багатьох факторів серед яких, в першу чергу, це видова приналежність, склад раціону та фізіологічний стан молочної залози. За останні роки накопичилася велика кількість даних стосовно коливання тих чи інших ліпідних показників молока залежно від виду, віку, періоду лактації, раціону, доби року, моціону, технології утримання тварин, фізіологічного стану лактуючого організму в цілому та стану молочної залози зокрема. Фактори регуляції жирнокислотного складу молока-сировини: генетично обумовлені параметри якості і безпеки; жирнокислотний склад раціону; синтез жирних кислот мікроорганізмами травного тракту; синтез жирних кислот у молочній залозі; фізіологічний стан молочної залози. Молоко кожного виду продуктивних тварин має свій специфічний ліпідний профіль та використовується в рецептурі визначених молочних продуктів для одержання запланованих технологічних та харчових параметрів. Постановка діагнозу у продуктивних тварин на субклінічний мастит передбачає використання допоміжних (термометрія, термографія, електропровідність) та лабораторних методів досліджень: підрахунок кількості соматичних клітин; використання спеціалізованих тестів; мікробіологічні дослідження молока; біохімічні дослідження молока. Біохімічна складова у діагностиці субклінічної форми маститу є недооцінена. Підвищення температури органу передбачає зростання інтенсивності виділення тепла під час окиснення субстратів, іноді за рахунок зниження інтенсивності синтезу енергоємних сполук. Інших джерел енергії в організмі просто не існує. Така сама ситуація і з окремими ланками метаболізму, які спрямовані на розвиток захисних реакцій на етіологічний фактор, що спрямований на ураження молочної залози. Саме через це біохімічний склад секрету молочної залози за умов відсутності клінічних ознак перебігу маститу зазнає біохімічних змін і завданням учених є розробити механізми чіткого відслідковування таких змін, ідентифікації тварин з субклінічною формою маститу та проведення ефективного лікування.

Ключові слова:
молоко, ліпіди, субклінічний мастит, жирнокислотний склад

##plugins.themes.bootstrap3.article.details##

Як цитувати
Danchuk, V., Ushkalov, V., Midyk, S., Vygovska, L., Danchuk, O., & Korniyenko, V. (2021). ЛІПІДИ МОЛОКА ТА СУБКЛІНІЧНИЙ МАСТИТ. Food Science and Technology, 15(2). https://doi.org/10.15673/fst.v15i2.2103
Розділ
Хімія харчових продуктів і матеріалів. Нові види сировини

Посилання

1. Truchet S, Honvo-Houéto E. Physiology of milk secretion. Best Practice & Research Clinical Endocrinology & Metabolism. 2017;31(4):367-384. https://doi.org/10.1016/j.beem.2017.10.008
2. McClure SB, Magill C, Podrug E, Moore AM, Harper, T. K., Culleton, et al. Fatty acid specific δ13C values reveal earliest Mediterranean cheese production 7,200 years ago. PloS ONE. 2018;13(9):e0202807. https://doi.org/10.1371/journal.pone.0202807
3. Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cellular & molecular biology letters. 2017;22(1):1-11. https://doi.org/10.1186/s11658-017-0042-4
4. Harwood WS, Drake MA. Validation of fluid milk consumer segments using qualitative multivariate analysis. Journal of Dairy Science. 2020;103(11):10036-10047. https://doi.org/10.3168/jds.2019-17797
5. Ushkalov V, Danchuk V, Midyk S, Voloshchuk N, Danchuk O. Mycotoxins in milk and in dairy products. Food science and technology. 2020;14(3):137-149. https://doi.org/10.15673/fst.v14i3.1786
6. Bayer OV, Kaminska OV, Bondarets OV, Yaremchuk OS, Skoromna ОІ, Midyk SV et al. Evaluation of Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry for Determination of Avermectin Residues in Milk. Ukrainian Journal of Ecology. 2019;9(4):521-526. https://doi.org/10.15421/2019_784
7. Voitsitskiy VM, Danchuk VV, Ushkalov VО, Midyk SV, Kepple OYu, Danchuk ОV et al. Migration of antibiotics residual quantities in aquatic ecosystems. Ukrainian Journal of Ecology. 2019;9(3):280-286. https://doi.org/10.15421/2019_742
8. Bayer EV, Novozhitskaya YuN, Shevchenko LV, Mykhalska VM. Determination of the content of antibiotics and sulfanilamide drugs in milk by screening method. Ukrainian Journal of Ecology. 2017;7(4):576-582. https://doi.org/10.15421/2017_163
9. Bayer EV, Novozhitskaya YuN, Shevchenko LV, Mykhalska VM. Monitoring of residues of veterinary preparations in food products. Ukrainian Journal of Ecology. 2017;7(3):251-257. https://doi.org/10.15421/2017_76
10. Park YW, Juárez M, Ramos M, Haenlein GFW. Physico-chemical characteristics of goat and sheep milk. Small ruminant research. 2007;68(1-2):88-113. https://doi.org/10.1016/j.smallrumres.2006.09.013
11. Månsson HL. Fatty acids in bovine milk fat fatty acids in bovine milk fat. Food & Nutrition Research. 2008;52:1-3. https://doi.org/10.3402/fnr.v52i0.1821
12. Gantner V, Mijić Р, Baban M, Škrtić Z, Turalija A. The overall and fat composition of milk of various species. Mljekarstvo. 2015;65(4):223-231. https://doi.org/10.15567/mljekarstvo.2015.0401
13. Andreas NJ, Kampmann B, Le-Doare KM. Human breast milk: A review on its composition and bioactivity. Early human development. 2015;91(11):629-635. https://doi.org/10.1016/j.earlhumdev.2015.08.013
14. Koletzko B. Human milk lipids. Annals of Nutrition and Metabolism. 2016;69(2):28-40. https://doi.org/10.1159/000452819
15. Uauy R, Mena P. Long-chain polyunsaturated fatty acids supplementation in preterm infants. Current opinion in pediatrics. 2015;27(2):165-171. https://doi.org/10.1097/MOP.0000000000000203
16. Yang J, Zheng N, Wang J, Yang, Y. Comparative milk fatty acid analysis of different dairy species. International Journal of Dairy Technology. 2018;71(2):544-550. https://doi.org/10.1111/1471-0307.12443
17. Hanuš O, Samková E, Křížová L, Hasoňová L, Kala R. Role of fatty acids in milk fat and the influence of selected factors on their variability – a review. Molecules. 2018;23(7):1636. https://doi.org/10.3390/molecules23071636
18. Mikołajczyk K, Pecka-Kiełb E, Zachwieja A. Impact of the volume and the profile of volatile fatty acids in the rumen fermentation on cow productivity and milk composition. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka. 2019;69(4):222-228. https://doi.org/10.15567/mljekarstvo.2019.0402
19. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Annals of internal medicine. 2014;160(6):398-406. https://doi.org/10.7326/M13-1788
20. Thorning TK, Bertram HC, Bonjour JP, Groot L, Dupont D, Feeney E, et al. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. The American Journal of Clinical Nutrition. 2017;105(5):1033-1045. https://doi.org/10.3945/ajcn.116.151548
21. Atkins NE, Cianchi C, Rutter SM, Williams SJ, Gauld C, Charlton GL, et al. Performance, milk fatty acid composition and behaviour of high‐yielding Holstein dairy cows given a limited grazing period. Grass and Forage Science. 2020;75(2):181-191. https://doi.org/10.1111/gfs.12471
22. Koczura M, Bouchon M, Turille G, De Marchi M, Kreuzer M, Berard J, et al. Consequences of walking or transport by truck on milk yield and quality, as well as blood metabolites, in Holstein, Montbéliarde, and Valdostana dairy cows. Journal of dairy science. 2020;103(4):3470-3478. https://doi.org/10.3168/jds.2019-17467.
23. Anankanbil S, Larsen MK, Weisbjerg MR, Wiking L. Effects of variation in fatty acids and triglyceride composition on melting behavior in milk fat. Milk Science International – Milchwissenschaft. 2018;71:4-9. https://doi.org/10.25968/MSI.2018.2
24. The European Comission, Entering a name in the register of traditional specialities guaranted (Heumilch/Haymilk/Latte fieno/Lait de foin/Leche de heno (TSG)). Off. J. Eur. Union. 2016;58:28-34.
25. The European Parliament and the Council of the European Union, Regulation (EU) no 1151/2012 of the European Parliament and of the Council of 21 November 2012 on quality schemes for agricultural products and foodstuffs. Off. J. Eur. Union. 2012;343:1-28.
26. Bugaud C, Buchin S, Coulon JB, Hauwuy A, Dupont D. Influence of the nature of alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk. Le Lait. 2001;81(3):401-414. https://doi.org/10.1051/lait:2001140
27. Paredes CLL, Werteker M, Rossmann B, Keplinger J, Olschewski I.L, Schreiner M. Discrimination of haymilk and conventional milk via fatty acid profiles. Journal of Food Measurement and Characterization. 2018;12:1391-1398. https://doi.org/10.1007/s11694-018-9753-0
28. Lopez A, Vasconi M, Moretti VM, Bellagamba F. Fatty acid profile in goat milk from high-and low-input conventional and organic systems. Animals. 2019;9(7):452. https://doi.org/10.3390/ani9070452
29. Mcsweeney PLH, Sousa MJ. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait. 2000;80(3):293-324. https://doi.org/10.1051/lait:2000127
30. Thierry A, Collins YF, Mukdsi MA, McSweeney PL, Wilkinson MG, Spinnler HE. Lipolysis and metabolism of fatty acids in cheese. Chemistry, Physics and Microbiology. 2017;17:423-444. https://doi.org/10.1016/B978-0-12-417012-4.00017-X
31. Lordan R, Walsh A, Crispie F, Finnegan L, Demuru M, Tsoupras A, et al. Caprine milk fermentation enhances the antithrombotic properties of cheese polar lipids. Journal of Functional Foods. 2019;61:103507. https://doi.org/10.1016/j.jff.2019.103507
32. Asensio-Grau A, Peinado I, Heredia A, Andrés A. In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT. 2019;113:108278. https://doi.org/10.1016/j.lwt.2019.108278
33. Dopieralska P, Barłowska J, Teter A, Król J, Brodziak A, Domaradzki P. Changes in Fatty Acid and Volatile Compound Profiles during Storage of Smoked Cheese Made from the Milk of Native Polish Cow Breeds Raised in the Low Beskids. Animals. 2020;10(11):2103. https://doi.org/10.3390/ani10112103
34. Grygier A, Myszka K, Juzwa W, Białas W, Rudzińska M. Galactomyces geotrichum mold isolated from a traditional fried cottage cheese produced omega-3 fatty acids. International journal of food microbiology. 2020;319:108503. https://doi.org/10.1016/j.ijfoodmicro.2019.108503
35. Amores G, Virto M. Total and free fatty acids analysis in milk and dairy fat. Separations. 2019;6(1):14. https://doi.org/10.3390/separations6010014
36. Jensen RG. The composition of bovine milk lipids: January 1995 to December 2000. Journal of dairy science. 2002;85(2):295-350. https://doi.org/10.3168/jds.s0022-0302(02)74079-4
37. Zhiqian L, Li C, Pryce J, Rochfort S. Comprehensive Characterization of Bovine Milk Lipids: Phospholipids, Sphingolipids, Glycolipids, and Ceramides. Journal of agricultural and food chemistry. 2020; 68(24):6726-6738. https://doi.org/10.1021/acs.jafc.0c01604
38. Newburg DS, Neubauer SH, Jensen RG. Handbook of milk composition. San Diego: Academic Press; 1995.
39. Albenzio M, Santillo A, Avondo M, Nudda A, Chessa S, Pirisi A. Nutritional properties of small ruminant food products and their role on human health. Small Ruminant Research. 2016;135:3-12. https://doi.org/10.1016/j.smallrumres.2015.12.016
40. Paszczyk B, Łuczyńska J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods. 2020;9(11):1667. https://doi.org/10.3390/foods9111667
41. Moate PJ, Chalupa W, Boston RC, Lean IJ. Milk fatty acids. I. Variation in the concentration of individual fatty acids in bovine milk. Journal of Dairy Science. 2007;90(10):4730-4739. https://doi.org/10.3168/jds.2007-0225
42. Bohl M, Bjørnshave A, Larsen MK, Gregersen S, Hermansen K. The effects of proteins and medium-chain fatty acids from milk on body composition, insulin sensitivity and blood pressure in abdominally obese adults. European journal of clinical nutrition. 2017;71:76-82. https://doi.org/10.1038/ejcn.2016.207
43. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320. https://doi.org/10.1038/ncomms8320
44. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839-49. https://doi.org/10.3390/nu7042839.
45. Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular & Molecular Immunology. 2021;18:1161-1171. https://doi.org/10.1038/s41423-020-00625-0
46. Toledo-Alvarado H, Vazquez AI, de Los Campos G, Tempelman RJ, Gabai G, Cecchinato A. Changes in milk characteristics and fatty acid profile during the estrous cycle in dairy cows. Journal of dairy science. 2018;101(10):9135-9153. https://doi.org/10.3168/jds.2018-14480
47. Wang Y, Nan X, Zhao Y, Jiang L, Wang M, Wang H. Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. Journal of animal science and biotechnology. 2021;12:1-21. https://doi.org/10.1186/s40104-020-00543-1
48. Stinson LF, Gay MC, Koleva PT, Eggesbø M, Johnson CC, Wegienka G. Human milk from atopic mothers has lower levels of short chain fatty acids. Frontiers in immunology. 2020;11:1427. https://doi.org/10.3389/fimmu.2020.01427
49. Baltić B, Starčević M, Đorđević J, Mrdović B, Marković R. Importance of medium chain fatty acids in animal nutrition. In IOP Conference Series: Earth and Environmental Science. 2017;85(1):012048. https://doi.org/10.1088/1755-1315/85/1/012048
50. Skřivanová E, Molatova Z, Skřivanová V, Marounek M. Inhibitory activity of rabbit milk and medium-chain fatty acids against enteropathogenic Escherichia coli O128. Veterinary microbiology. 2009;135(3-4):358-362. https://doi.org/10.1016/j.vetmic.2008.09.083
51. Khuwijitjaru P, Adachi S, Matsuno R. Solubility of saturated fatty acids in water at elevated temperatures. Bioscience, biotechnology, and biochemistry. 2002;66(8):1723-1726. https://doi.org/10.1271/bbb.66.1723
52. Tang M, Laarveld B, Van Kessel AG, Hamilton DL, Estrada A, Patience JF. Effect of segregated early weaning on postweaning small intestinal development in pigs. Journal of animal science. 1999;77(12):3191-3200. https://doi.org/10.2527/1999.77123191x
53. Świątkiewicz M, Hanczakowska E, Okoń K, Kowalczyk P, Eugeniusz RG. Effect of Maternal Diet and Medium Chain Fatty Acids Supplementation for Piglets on Their Digestive Tract Development, Structure, and Chyme Acidity as Well as Performance and Health Status. Animals. 2020;10(5):834. https://doi.org/10.3390/ani10050834
54. Quinn EA. Milk, medium chain fatty acids and human evolution. Breastfeeding Routledge; 2017.
55. Righi F, Simoni M, Bresciani C, Cabassi CS, Flisi S, Hanlon ME, et al. Adding monoglycerides containing short and medium chain fatty acids to milk replacer: effects on health and performance of preweaned calves. Italian Journal of Animal Science. 2020;19(1):1417-1427. https://doi.org/10.1080/1828051X.2020.1847208
56. Dai X, Yuan T, Zhang X, Zhou Q, Bi H, Yu R, et al. Short-chain fatty acid (SCFA) and medium-chain fatty acid (MCFA) concentrations in human milk consumed by infants born at different gestational ages and the variations in concentration during lactation stages. Food & function. 2020;11(2):1869-1880. https://doi.org/10.1039/C9FO02595B
57. Yuan T, Geng Z, Dai X, Zhang X, Wei W, Wang X, et al. Triacylglycerol Containing Medium-Chain Fatty Acids: Comparison of Human Milk and Infant Formulas on Lipolysis during In Vitro Digestion. Journal of agricultural and food chemistry. 2020;68(14):4187-4195. https://pubs.acs.org/doi/10.1021/acs.jafc.9b07481?goto=supporting-info
58. Hageman JH, Keijer J, Dalsgaard TK, Zeper LW, Carrière F, Feitsma AL, et al. Free fatty acid release from vegetable and bovine milk fat-based infant formulas and human milk during two-phase in vitro digestion. Food & function. 2019;10(4):2102-2113. https://doi.org/10.1039/C8FO01940A
59. Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM, Dewhurst RJ. Factors affecting odd-and branched-chain fatty acids in milk: A review. Animal feed science and technology. 2006;131(3-4):389-417. https://doi.org/10.1016/j.anifeedsci.2006.06.017
60. Chamekh L, Calvo M, Khorchani T, Castro-Gómez P, Hammadi M, Fontecha J, et al. Impact of management system and lactation stage on fatty acid composition of camel milk. Journal of Food Composition and Analysis. 2020;87:103418.
61. Kokotou MG, Batsika CS, Mantzourani C, Kokotos G. Free Saturated Oxo Fatty Acids (SOFAs) and Ricinoleic Acid in Milk Determined by a Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Method. Metabolites. 2021;11:46. https://doi.org/10.3390/metabo11010046.
62. Santin Junior IA, Silva KCC, Cucco DC. Milk fatty acids profile and the impact on human health. Dairy and Vet Sci J. 2019;10(1):555779. https://doi.org/10.19080/JDVS.2019.10.555779
63. Bauman DE, Baumgard LH, Corl BA, Griinari JM, Biosynthesis of conjugated linoleic acid in ruminants. Journal of Animal Science. 2020;77:1-15. https://doi.org/10.2527/jas2000.77E-Suppl1f
64. Sieber, R., Collomb, M., Aeschlimann, A., Jelen, P., & Eyer, H. (2004). Impact of microbial cultures on conjugated linoleic acid in dairy products – a review. International Dairy Journal. 2004;14(1):1-15. https://doi.org/10.1016/S0958-6946(03)00151-1
65. Jiang J, Björck L, Fonden R. Production of conjugated linoleic acid by dairy starter cultures. Journal of Applied Microbiology. 1998;85(1):95-102. https://doi.org/10.1046/j.1365-2672.1998.00481.x
66. Paszczyk B, Brandt W, Łuczyńska J. Isomers of c18:1 and c18:2 Acids in Fresh and Stored Fermented Milks Produced with Selected Starter Cultures. Czech Journal of Food Sciences. 2016;34(5):391-396. https://doi.org/10.17221/358/2015-CJFS
67. Chávarri F, Bustamante MA, Santisteban A, Virto M, Barron LJR, de Renobales M. Changes in free fatty acids during ripening of Idiazabal cheese manufactured at different times of the year. Journal of Dairy Science. 1999;82(5):885-890. https://doi.org/10.3168/jds.S0022-0302(99)75307-5
68. Kamath S, Wulandewi A, Deeth H. Relationship between surface tension, free fatty acid concentration and foaming properties of milk. Food Research International. 2008;41:623-629. https://doi.org/10.1016/j.foodres.2008.03.014
69. Mannion DT, Furey A, Kilcawley KN. Free fatty acids quantification in dairy products. International Journal of Dairy Technology. 2015;69(1):1-8. https://doi.org/10.1111/1471-0307.12301
70. Kennelly JJ. The fatty acid composition of milk fat as influenced by feeding oilseeds. Animal Feed Science and Technology. 1996;60(3-4):137-152. https://doi.org/10.1016/0377-8401(96)00973-X
71. Mangwe M, Bryant R, Gregorini P. Rumen fermentation and fatty acid composition of milk of mid lactating dairy cows grazing chicory and ryegrass. Animals. 2020;10(1):169. https://doi.org/10.3390/ani10010169
72. Bryszak M, Szumacher-Strabel M, Huang H, Pawlak P, Lechniak D, Kołodziejski P, et al. Lupinus angustifolius seed meal supplemented to dairy cow diet improves fatty acid composition in milk and mitigates methane production. Animal Feed Science and Technology. 2020;267:114590. https://doi.org/10.1016/j.anifeedsci.2020.114590
73. Miliku K, Duan QL, Moraes TJ, Becker AB, Mandhane PJ, Turvey SE. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD Cohort Study. The American Journal of Clinical Nutrition. 2019;110(6):1370-1383. https://doi.org/10.1093/ajcn/nqz229
74. Petrini J, Iung LHS, Rodriguez MAP, Salvian M, Pértille F, Rovadoscki GA. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. Journal of animal breeding and genetics. 2016;133(5):384-395. https://doi.org/10.1111/jbg.12205
75. Stapai PV, Havryliak VV, Stakhiv NP, Paraniak NM, Skorokhid AV. Sklad zhyrnykh kyslot lipidiv moloka vivtsematok ukrainskoi hirskokarpatskoi porody za riznykh umov yikh utrymannia. Visnyk ahrarnoi nauky. 2016;7:28-33. http://nbuv.gov.ua/UJRN/vaan_2016_7_7
76. Nudda A, Cannas A, Correddu F, Atzori AS, Lunesu MF, Battacone G, et al. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals. 2020;10(8):1290. https://doi.org/10.3390/ani10081290
77. Serra A. Fatty acids milk composition in Italian Simmental and Italian Holstein cows. 2015 [Internet]. Available from: http://hdl.handle.net/11568/753416 (cited 15.06.2021)
78. Fushimi T, Izumi Y, Takahashi M, Hata K, Murano Y, Bamba T. Dynamic Metabolome Analysis Reveals the Metabolic Fate of Medium-Chain Fatty Acids in AML12 Cells. Journal of Agricultural and Food Chemistry. 2020;68(43):11997-12010. https://doi.org/10.1021/acs.jafc.0c04723
79. Ulbricht TL, Southgate DA. Coronary heart disease: seven dietary factors. The lancet. 1991;338(8773):985-992. https://doi.org/10.1016/0140-6736(91)91846-M
80. Stádník L, Ducháček J, Okrouhlá M, Ptáček M, Beran J, Stupka R, et al. The effect of parity on the proportion of important healthy fatty acids in raw milk of Holstein cows. Mljekarstvo. 2013;63(4):195-202. https://hrcak.srce.hr/111097
81. Lock AL, Garnsworthy PC. Seasonal variation in milk conjugated linoleic acid and Delta(9)-desaturase activity in dairy cows. Livestock Production Science. 2003;79(1):47-59. https://doi.org/10.1016/S0301-6226(02)00118-5
82. Chouinard PY, Corneau L, Barbano DM, Metzger LE, Bauman DE. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. The Journal of Nutrition. 1999;129:1579-1584. https://doi.org/10.1093/jn/129.8.1579
83. Mele M, Conte G, Castiglioni B, Chessa S, Macciotta NPP, Serra A, et al. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. J. Dairy Sci. 2007;90(9):4458-4465. https://doi.org/10.3168/jds.2006-617
84. Erickson MC. Variation of lipid and tocopherol composition in 3 strains of channel catfish (Ictalurus punctatus). J. Sci. Food Agric. 1992;59(4):529-536. https://doi.org/10.1002/jsfa.2740590416
85. Saito M, Kubo K. Relationship between tissue lipid peroxidation and peroxidizability index after alpha-linolenic, eicosapentaenoic, or docosahexaenoic acid intake in rats. British Journal of Nutrition. 2003;89(1):19-28. https://doi.org/10.1079/BJN2002731
86. Nagyová A, Krajčovičová-Kudláčková M, Klvanová J. LDL and HDL oxidation and fatty acid composition in vegetarians. Annals of Nutrition and Metabolism. 2001;45:148-151. https://doi.org/10.1159/000046722
87. Timmen H. Characterization of milk fat hardness in farm milk via parameters of fatty-acid composition. Kieler Milchw. Forsch. 1990;42:129-138.
88. Hurtaud C, Buchin S, Martin B, Verdier-Metz I, Peyraud JL, Noel Y. Milk quality and consequences on quality of dairy products: Several some measuring techniques of measure in dairy cows trials. Recontres autour des Recherches sur Ruminant. 2001;8:35-42.
89. Vishovan JuJu, Ushkalov VO. Spread of staphylococcus and diseases caused by them. Bulletin of Agricultural Science. 2018;2:36-42. https://doi.org/10.31073/agrovisnyk201802-06
90. Salmanov AG, Ushkalov VO, Shunko YeYe, Piven N, Vygovska LM, Verner O M, et al. One health: antibiotic-resistant bacteria contamination in fresh vegetables sold at a retail markets in kyiv, Ukraine. Wiadomosci Lekarskie. 2021;74(1):83-89 https://doi.org/10.36740/WLEK202101116
91. Vygovska L, Nedosekov V, Ushkalov V, Boyko O, Kepple O, Vishovan Yu, еt аl. Study of antibiotic sensitivity of Salmonella spp. developed by food and biological material. One health & Risk management. 2020;1(1):22-26. https://doi.org/10.5281/ZENODO.3700957
92. Maletić M, Magaš V, Maletić J. The role of veterinarian in the monitoring programs of mastitis control. In IOP Conference Series: Earth and Environmental Science. 2017;85:012035. https://doi.org/10.1088/1755-1315/85/1/012035
93. Sah K, Karki P, Shrestha RD, Sigdel A, Adesogan AT, Dahl GE. Milk Symposium review: Improving control of mastitis in dairy animals in Nepal. Journal of Dairy Science. 2020;103(11):9740-9747. https://doi.org/10.3168/jds.2020-18314
94. Sinha R, Bhakat M, Mohanty TK, Ranjan A., Kumar R, Lone SA, et al. Infrared thermography as non-invasive technique for early detection of mastitis in dairy animals-A review. Asian Journal of Dairy & Food Research. 2018;37(1):1-6.
95. Hiitiö H, Vakkamäki J, Simojoki H, Autio T, Junnila J, Pelkonen S, et al. Prevalence of subclinical mastitis in Finnish dairy cows: changes during recent decades and impact of cow and herd factors. Acta Veterinaria Scandinavica. 2017;59:1-14. https://doi.org/10.1186/s13028-017-0288-x
96. Samuel TM, De Castro CA, Dubascoux S, Affolter M, Giuffrida F, Billeaud C, et al. Subclinical Mastitis in a European Multicenter Cohort: Prevalence, Impact on Human Milk (HM) Composition, and Association with Infant HM Intake and Growth. Nutrients. 2020;12(1):105. https://doi.org/10.3390/nu12010105
97. Tuaillon E, Viljoen J, Dujols P, Cambonie G, Rubbo PA, Nagot N, et at. Subclinical mastitis occurs frequently in association with dramatic changes in inflammatory/anti-inflammatory breast milk components. Pediatric research. 2017;81:556-564. https://doi.org/10.1038/pr.2016.220
98. Lusis I, Antane V, Laurs A. Effectiveness of mastitis detection index for cow monitoring and abnormal milk detection in milking robots. Engineering for Rural Development 16. 2017;1383-1387. http://dx.doi.org/10.22616/ERDev2017.16.N314
99. Quintas H, Mateus Ó, Maurício R, Mendonça Á, Alegria N, Valentim R. Somatic cell count as a tool to control subclinical mastitis in serrana goats. In Book of the conference abstracts Warsaw. 2019:31-32. Available from: http://hdl.handle.net/10198/21625
100. Kim Heejin, Younjeong Min, Byoungju Choi. Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Computers and Electronics in Agriculture. 2019;162:119-125. https://doi.org/10.1016/j.compag.2019.04.004
101. Sathiyabarathi M, Jeyakumar S, Manimaran A, Pushpadass HA, Kumaresan A, Lathwal SS. Infrared thermography to monitor body and udder skin surface temperature differences in relation to subclinical and clinical mastitis condition in Karan Fries (Bos taurus× Bos indicus) crossbred cows. Indian Journal of Animal Sciences. 2018;88(6):694-699.
102. Ametaj B, Zhang G, Dervishi E, Wishart D. 231 Urinary metabotyping around parturition indicates consistent metabolite signatures that can be used for monitoring and diagnosing of subclinical mastitis in dairy cows. Journal of Animal Science. 2018;96(3):19-20. https://doi.org/10.1093/jas/sky404.044
103. de Jong A, Garch F, Simjee S, Moyaert H, Rose M, Youala M, et al. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Veterinary microbiology. 2018; 213:73-81. https://doi.org/10.1016/j.vetmic.2017.11.021
104. Li C, Solomons NW, Scott ME, Koski KG. Subclinical mastitis (SCM) and proinflammatory cytokines are associated with mineral and trace element concentrations in human breast milk. Journal of Trace Elements in Medicine and Biology. 2018;46:55-61. https://doi.org/10.1016/j.jtemb.2017.11.010
105. Pisanu S, Cacciotto C, Pagnozzi D, Uzzau S, Pollera C, Penati M, et al. Impact of Staphylococcus aureus infection on the late lactation goat milk proteome: New perspectives for monitoring and understanding mastitis in dairy goats. Journal of proteomics. 2020;221:103763. https://doi.org/10.1016/j.jprot.2020.103763
106. Gokceoglu A, Yarim GF, Gultiken N, Yarim M. High epidermal growth factor concentration associated with somatic cell count in milk of cows with subclinical mastitis. Medycyna Weterynaryjna. 2020;76(6):354-357.
107. Tong J, Zhang H, Zhang Y, Xiong B, Jiang L. Microbiome and metabolome analyses of milk from dairy cows with subclinical Streptococcus agalactiae mastitis – Potential biomarkers. Frontiers in microbiology. 2019;10:2547. https://doi.org/10.3389/fmicb.2019.02547
108. Junza A, Saurina J, Barron D, Minguillon C, et al. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry. Journal of Chromatography A. 2016;1460:92-99. https://doi.org/10.1016/j.chroma.2016.07.016
109. Randolph HE, Erwin RE. Influence of mastitis on properties of milk. X. Fatty acid composition. Journal of Dairy Science. 1974;57(8):865-868. https://doi.org/10.3168/jds.s0022-0302(74)84978-7
110. Mavangira V, Gandy JC, Zhang C, Ryman VE, Jones AD, Sordillo LM. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis. Journal of dairy science. 2015;98(9):6202-6215. https://doi.org/10.3168/jds.2015-9570
111. Massart-Leën AM, Burvenich CD, Massart L. Triacylglycerol fatty acid composition of milk from periparturient cows during acute Escherichia coli mastitis. Journal of dairy research. 1994;61(2):191-199. https://doi.org/10.1017/S002202990002820X
112. Chang LL, Yang ZP, Wu HT, Chen Y, Shi XK, Mao YJ, et al. Comparative study on fatty acid composition between normal milk and subclinical mastitis milk of dairy cow. Chines J Anim Vet Sci. 2011;43:44-47.
113. Fadul-Pacheco L, Delgado H, Cabrera VE. Exploring machine learning algorithms for early prediction of clinical mastitis. International Dairy Journal. 2021;119:105051. https://doi.org/10.1016/j.idairyj.2021.105051
114. Post C, Rietz C, Büscher W, Müller U. The Importance of Low Daily Risk for the Prediction of Treatment Events of Individual Dairy Cows with Sensor Systems. Sensors. 2021;21(4):1389. https://doi.org/10.3390/s21041389
115. Wisnieski L, Norby B, Pierce SJ, Becker T, Gandy JC, Sordillo LM. Predictive models for early lactation diseases in transition dairy cattle at dry-off. Preventive veterinary medicine. 2019;163:68-78. https://doi.org/10.1016/j.prevetmed.2018.12.014
116. Weigel KA, Shook GE. Genetic selection for mastitis resistance. Veterinary Clinics of North America: Food Animal Practice. 2018;34(3):457-472. https://doi.org/10.1016/j.cvfa.2018.07.001
117. Dervishi E, Zhang G, Dunn SM, Mandal R, Wishart DS, Ametaj BN. GC-MS Metabolomics Identifies Metabolite Alterations That Precede Subclinical Mastitis in the Blood of Transition Dairy Cows. Journal of Proteome Research. 2017;16(2):433-446. https://doi.org/10.1021/acs.jproteome.6b00538
118. Zwierzchowski G, Zhang G, Mandal R, Wishart DS, Ametaj BN. Mass-spec-based urinary metabotyping around parturition identifies screening biomarkers for subclinical mastitis in dairy cows. Research in Veterinary Science. 2020;129:39-52. https://doi.org/10.1016/j.rvsc.2020.01.001
119. Ebrahimie E, Ebrahimi F, Ebrahimi M, Tomlinson S, Petrovski KR. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: highlighting the predictive power of lactose and electrical conductivity. Journal of Dairy Research. 2018;85(2):193-200. https://doi.org/10.1017/S0022029918000249