Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

ВПЛИВ ПОПЕРЕДНЬОЇ ОБРОБКИ ХІТОЗАНОМ НА ЯКІСТЬ СУНИЦІ ПІД ЧАС ЗБЕРІГАННЯ

##plugins.themes.bootstrap3.article.main##

A. Blahopoluchna
https://orcid.org/0000-0001-5897-0120
N. Liakhovska

Анотація

Стаття присвячена вдосконаленню технології зберігання ягід суниці. Досліджено вплив попередньої обробки ягід водними розчинами низькомолекулярного хітозану трьох концентрацій (0,1%; 0,3%; 0,5%) на якісні показники суниці під час холодильного зберігання. Оброблені ягоди та контроль (варіант без обробки) зберігали у перфорованих пластикових контейнерах місткістю 500 грам за температури 0 ± 2 ° C протягом 14 днів. Встановлено, що ягоди суниці, оброблені розчинами хітозану, мали значно менші втрати маси, ніж у контролі. Після закінчення зберігання показник встановлюється на рівні 9,7% у контролі та 7,0-8,6% у оброблених ягодах. Досліджено, що інтенсивність дихання ягід суниці в перший день різко знизилася, що було викликано зберіганням в холодильнику і продовжувала знижуватися до кінця зберігання. В кінці терміну зберігання показник встановлений на рівні 3,3 мг CO2/кг-1 год-1 у контролі та 2,2-3,0 мг СО2/кг-1 год-1 у оброблених ягодах. Щільність ягід в кінці зберігання становила 0,10-0,14 кг/см2. Визначено ступінь блиску ягід. Встановлено, що на 14-й день зберігання поверхня ягід без обробки була тьмяною. Найкращі показники спостерігалися у варіанті з концентрацією обробки хітозаном 0,5%. Досліджено вплив хітозанових плівок на органолептичні показники ягід. Було встановлено, що попередня обробка не погіршила смаку ягід. Результати дегустаційної оцінки свідчать про те, що смак, аромат та колір були кращими у варіантах із концентрацією обробки 0,3 та 0,5%, однак за зовнішнім виглядом та консистенцією фахівці віддали перевагу ягoдам із концентрацією переробки 0,5%. Встановлено, що ягоди суниці при зберігання протягом двох тижнів були пошкоджені чотирма видами грибкових захворювань. В зразках виявлено Botrytis cinerea (сіра гниль); Rhizopus stolonifer (чорна гниль); Whetzelinia sclerotiorum (біла гниль) та Penicillium spp. Встановлено, що попередня обробка суниці розчинами хітозану зменшує розвиток фітопатогенних захворювань. Доведено, що їстівні покриття на основі хітозану позитивно впливають на ягоди суниці, збільшуючи термін їх зберігання та покращуючи їх якість. Зроблено висновок щодо технології застосування та концентрацій розчинів хітозану

Ключові слова:
суниця, хітозан, холодильне зберігання, якість

##plugins.themes.bootstrap3.article.details##

Як цитувати
Blahopoluchna, A., & Liakhovska, N. (2021). ВПЛИВ ПОПЕРЕДНЬОЇ ОБРОБКИ ХІТОЗАНОМ НА ЯКІСТЬ СУНИЦІ ПІД ЧАС ЗБЕРІГАННЯ. Food Science and Technology, 15(3). https://doi.org/10.15673/fst.v15i3.2151
Розділ
Хімія харчових продуктів і матеріалів. Нові види сировини

Посилання

1. Feliziani E, Landi L, Romanazzi G. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate polymers. 2015 Nov;132(5):111-117. DOI: https://doi.org/10.1016/j.carbpol.2015.05.078
2. Luksiene Z, Rasiukeviciute N, Zudyte B. Uselis N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. Journal of Photochemistry and Photobiology B: Biology. 2020 Jan; 203:111656. DOI: https://doi.org/10.1016/j.jphotobiol.2019.111656
3. Romanazzi G, Feliziani E, Landi L. Preharvest treatments with alternatives to conventional fungicides to control postharvest decay of strawberry. International Horticultural Congress on Horticulture: Sustaining Lives. 2015 May;1117:111-118. DOI: http://doi.org/10.17660/ActaHortic.2016.1117.19
4. Shahzad S, Ahmad S, Anwar R, Ahmad R. Pre-storage application of calcium chloride and salicylic acid maintain the quality and extend the shelf life of strawberry. Pak. J. Agri. Sci. 2020 Mar;57(2):339-350. DOI: http://doi.org/10.21162/PAKJAS/20.8953
5. Lozowicka B, Jankowska M, Hrynko I, Kaczynski P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental monitoring and assessment. 2016 Dec;188(1):51-70. DOI: http://doi.org/10.1007/s10661-015-4850-6
6. Leroux P, Gredt M, Leroch M, Walker F. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and environmental microbiology. 2010 Dec 17;76(19):6615-6630. DOI: http://doi.org/10.1128/AEM.00931-10
7. Thabet M. Application of chitosan with and oxalic acid combined hot water to control postharvest decay of strawberry fruits caused by Botrytis cinerea and Rhizopus stolonifer. Sciences. 2019;9(01):63-77.
8. Cerqueira M, Lima M, Souza BWS, Teixeira A, Moreira A, Vicente A. Functional polysaccharides as edible coatings for cheese. J. Agric. Food Chem. 2009;57(4):1456-1462. DOI: http://doi.org/10.1021/jf802726d
9. Martins J, Cerqueira A, Souza B. Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventionalsources incorporating nisin against Listeria monocytogenes. J. Agric. Food Chem. 2010;58(3):1884-1891. DOI: http://doi.org/10.1021/jf902774z
10. Guo M, Yadav P, Jin Z. Antimicrobial edible coatings and films from micro-emulsions and their food applications. International journal of food microbiology. 2017 Dec 18;263:9-16. DOI: http://doi.org/10.1016/j.ijfoodmicro.2017.10.002
11. Elsabee Z, Abdou S. Chitosan based edible films and coatings: a review. Mater Sci Eng C Mater Biol Appl. 2013;33(4):1819-1841. DOI: http://doi.org/10.1016/j.msec.2013.01.010
12. Kerch G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends Food Sci. Technol. 2015;46(2):159-166. DOI: https://doi.org/10.1016/j.tifs.2015.10.010
13. Guo M, Yadav M, Jin T. Antimicrobial edible coatings and films from micro-emulsions and their food applications. International journal of food microbiology. 2017;263:9-16. DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.10.002
14. Lozano-Navarro JI, Díaz-Zavala NP, Velasco-Santos C, Lozano I, Diaz P, Velasco C. Antimicrobial, optical and mechanical properties of chitosan–starch films with natural extracts. International journal of molecular sciences. 2017;18(5):997. DOI: https://doi.org/10.3390/ijms18050997
15. Yuan G, Chen X, Li D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International. 2016;89(1):117-128. DOI: https://doi.org/10.1016/j.foodres.2016.10.004
16. Asghari MA, Mostofi Y, Shoeybi SH, Fatahi M. Effect of cumin essential oil on postharvest decay and some quality factors of strawberry. Journal of Medicinal Plants. 2009;8(31):25-43.
17. Galus S. Development of edible coatings in the preservation of fruits and vegetables. In: Gutiérrez T, editor. Polymers for Agri-Food Applications. Springer, Cham. 2019 Aug 02;377-390. DOI: https://doi.org/10.1007/978-3-030-19416-1_19
18. Zam W. Effect of alginate and chitosan edible coating enriched with olive leaves extract on the shelf life of sweet cherries (Prunus avium L.). Journal of Food Quality. 2019 Jun 24;2019:7 p. DOI: https://doi.org/10.1155/2019/8192964
19. Martau A, Mihai M, Vodnar C. The use of chitosan, alginate, and pectin in the biomedical and food sector – biocompatibility, bioadhesiveness, and biodegradability. Polymers 2019;11(11):28 p. DOI: https://doi.org/10.3390/polym11111837
20. Ahmed W, Butt S. Preserving strawberry (Fragaria Ananasa) using alginate and soy based edible coatings. American Journal of Food Science and Technology. 2014;2(5):158-161. DOI: https://doi.org/10.12691/ajfst-2-5-4
21. Nair S, Tomar M, Punia S. Enhancing the functionality of chitosan-and alginate-based active edible coatings/films for the preservation of fruits and vegetables. International Journal of Biological Macromolecules. 2020 Dec 01;164:304-320. DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.083
22. Peretto G, Du W, Avena-Bustillos R, Berrios, Sambo P. Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food and Bioprocess Technology. 2017;10(1):165-174. DOI: https://doi.org/10.1007/s11947-016-1808-9
23. Vasylyshyna O. The influence of sodium alginate processing on fruits of cherry of the storage. Naukovi horyzonty.«Scientific horizons. 2019 Oct;83(10):35-40. DOI: http://doi.org/10.33249/2663-2144-2019-83-10-35-40
24. Costa MJ, Marques AM, Pastrana L, Teixeira JA, Sillankorva SM, Cerqueira MA. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food hydrocolloids. 2018 Aug;81:442-448. DOI: https://doi.org/10.1016/j.foodhyd.2018.03.014
25. Di Donato P, TaurisanoV, Poli A, d’Ayala GG, Nicolaus B, Malinconinco M, et al. Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydrate polymers. 2020;229:115427. DOI: https://doi.org/10.1016/j.carbpol.2019.115427
26. Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules. 2016;17(6):2160-2167. DOI: https://doi.org/10.1021/acs.biomac.6b00378
27. Gomez G, Lambrecht MVP. Lozano JE, Rinaudo M, Villar M. A Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). International journal of biological macromolecules. 2009;44(4):365-371. DOI: https://doi.org/10.1016/j.ijbiomac.2009.02.005
28. Nazoori F, Poraziz S, Mirdehghan, S, Esmailizadeh M, ZamaniBahramabadi E. Improving Shelf Life of Strawberry Through Application of Sodium Alginate and Ascorbic Acid Coatings. International Journal of Horticultural Science and Technology. 2020;7(3):279-293. DOI: https://doi.org/10.22059/ijhst.2020.297134.341
29. Emamifar A, Bavaisi S. Nanocomposite coating based on sodium alginate and nano-ZnO for extending the storage life of fresh strawberries (Fragaria× ananassa Duch.). Journal of Food Measurement and Characterization. 2020 Aug 02;14:1012-1024. DOI: https://doi.org/10.1007/s11694-019-00350-x
30. García-Figueroa A, Ayala-Aponte A, Sánchez-Tamayo MI. Effect of Aloe vera and sodium alginate edible coatings on postharvest quality of strawberry. Revista UDCA Actualidad Divulgación Científica. 2019 Jun;22(2):8 p. DOI: http://doi.org/10.31910/rudca.v22.n2.2019.1320
31. Tong Q, Xiao Q, Lim LT. Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films.Food Research International. 2008;41(10):1007-1014. DOI: https://doi.org/10.1016/j.foodres.2008.08.005
32. Hamidi M, Kennedy JF, Khodaiyan F, Mousavi Z, Hosseini SS. Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulans. International journal of biological macromolecules. 2019;138:725-735. DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.123
33. Diab T, Biliaderis C, Gerasopoulos D, Sfakiotakis E. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture. 2001;81(10):988-1000. DOI: https://doi.org/10.1002/jsfa.883
34. Trinetta V, Cutter CN. Pullulan: A suitable biopolymer for antimicrobial food packaging applications. In Barros-Velázquez j, editor. Antimicrobial Food Packaging. Academic Press; 2016. p.385-397. DOI: https://doi.org/10.1016/B978-0-12-800723-5.00030-9
35. Chu Y, Xu T, Gao C, Liu X, Zhang N, Feng X, Liu X, et al. Evaluations of physicochemical and biological properties of pullulan-based films incorporated with cinnamon essential oil and Tween 80. International journal of biological macromolecules. 2019;122:388-394. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.194
36. Badawy ME, Rabea EI. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry. 2011 Mar 22;2011:29p. DOI: https://doi.org/10.1155/2011/460381
37. Raafat D, Sahl H. Chitosan and its antimicrobial potential–a critical literature survey. Microbial biotechnology. 2009;2(2):186-201. DOI: https://doi.org/10.1111/j.1751-7915.2008.00080.x
38. Orzali L, Corsi B, Forni C, Riccioni L. Chitosan in agriculture: a new challenge for managing plant disease. Biological activities and application of marine polysaccharides. 2017 Jan;9:17-36. DOI: https://doi.org/10.5772/66840
39. Wiącek AE. Gozdecka A, Jurak M. Physicochemical characteristics of chitosan–TiO2 biomaterial. 1. Stability and swelling properties. Industrial & Engineering Chemistry Research. 2018;57(6):1859-1870. DOI: https://doi.org/10.1021/acs.iecr.7b04257
40. Badawy ME, Rabea EI. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. International Journal of Carbohydrate Chemistry. 2011 Jan 22;2011:29p. DOI: https://doi.org/10.1155/2011/460381
41. Lizardi-Mendoza J, Monal W, Valencia G. Chemical characteristics and functional properties of chitosan. In Chitosan in the preservation of agricultural commodities. Academic Press. 2016 Jan:12:3-31. DOI: https://doi.org/10.1016/B978-0-12-802735-6.00001-X
42. Souza V, Fernando A, Pires J, Rodrigues P, Lopes A, Fernandes F. Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products. 2017;107:565-572. DOI: https://doi.org/10.1016/j.indcrop.2017.04.056
43. Zhuikova Y, Zhuikov V, Zubareva A, Akhmedova S, Sviridova IK, Sergeeva N. Physicochemical and biological characteristics of chitosan/κ-carrageenan thin layer-by-layer films for surface modification of Nitinol. Micron. 2020;138:102922 DOI: https://doi.org/10.1016/j.micron.2020.102922
44. Perdones Á, Escriche I, Chiralt A, Vargas M. Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food chemistry. 2016;197:979-986. DOI: https://doi.org/10.1016/j.foodchem.2015.11.054
45. Vargas M, Albors A, Chiralt A, González-Martínez C. Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings // Postharvest biology and technology. 2006;41(2):164-171 DOI: https://doi.org/10.1016/j.postharvbio.2006.03.016
46. Pavinatto A, de Almeida Mattos A, Malpass A. Okura M, Balogh D, Sanfelice R. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International journal of biological macromolecules. 2020;151:1004-1011. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.076
47. Ventura-Aguilar RI, Bautista-Baños S, Flores-García G, Zavaleta-Avejar L. Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food chemistry. 2018;262:142-149 DOI: https://doi.org/10.1016/j.foodchem.2018.04.063
48. Hernandez-Munoz P, Almenar E, Del Valle V, Velez D, Gavara R. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry. 2008;110(2):428-435. DOI: https://doi.org/10.1016/j.foodchem.2008.02.020
49. Ibrahim M, Sharoba A, El Waseif K, El Mansy H, El Tanahy H. Effect of Edible Coating by Chitosan with Lemongrass and Thyme Oils on Strawberry Quality and Shelf Life during Storage. J Food Technol Nutr Sci. 2017 Feb 05;3(1):11 p.
50. Velickova E, Winkelhausen E, Kuzmanova S, Alves V, Moldão-Martins M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries under commercial storage conditions. LWT-Food Science and Technology. 2013;52(2):80-92. DOI: https://doi.org/10.1016/j.lwt.2013.02.004
51. Gol N, Patel P, Rao T. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology. 2013;85:185-195 DOI: https://doi.org/10.1016/j.postharvbio.2013.06.008
52. Dong L, Quyen N, Thuy D. Effect of edible coating and antifungal emulsion system on Colletotrichum acutatum and shelf life of strawberries. Vietnam Journal of Chemistry. 2020;58(2):237-244. DOI: https://doi.org/10.1002/vjch.201900169
53. Kumar A, Karuna K., Ahmad F. Chitosan, Calcium Chloride and Low Temperature Storage (2 ̊c) Effect on Organoleptic and Bio-chemical Changes during Storage of Strawberry cv. Camarosa. Int. J. Curr. Microbiol. App. Sci. 2020;9(2):1802-1814. DOI: https://doi.org/10.20546/ijcmas.2020.902.206
54. Ribeiro C, Vicente A, Teixeira A, Miranda C. Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology 2007;44(1):63-70. DOI: https://doi.org/10.1016/j.postharvbio.2006.11.015
55. Muley A, Singhal R. Extension of post harvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chemistry. 2020;329:127-213. DOI: https://doi.org/10.1016/j.foodchem.2020.127213
56. Jiang Y, Yu L, Zhu Z, Zhuang C. The preservation performance of chitosan coating with different molecular weight on strawberry using electrostatic spraying technique. International Journal of Biological Macromolecules. 2020;151:278-285. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.169
57. Martínez-González M, Bautista-Baños S, Correa-Pacheco Z, Corona-Rangel ML, Ventura-Aguilar RI, Río-García D. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings. 2020;10(2):90. DOI: https://doi.org/10.3390/coatings10020090
58. Nguyen V, Nguyen D. Effects of nano-chitosan and chitosan coating on the postharvest quality, polyphenol oxidase activity and malondialdehyde content of strawberry (Fragaria x ananassa Duch.). Journal of Horticulture and Postharvest Research. 2020;3:11-24. DOI: https://doi.org/10.22077/jhpr.2019.2698.1082
59. Pulicharla R, Marques C, Das R. K. Rouissi, T,Brar S. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation. International journal of biological macromolecules. 2016;88:171-178. DOI: https://doi.org/10.1016/j.ijbiomac.2016.03.036
60. Badawy M, Rabea E, AM El-Nouby M, Ismail R. I. Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. International Journal of Fruit Science. 2017;17(2):117-136. DOI: https://doi.org/10.1080/15538362.2016.1219290
61. Tavares T, Rocha D, de Rezende Queiroz E, de Abreu CMP. Chitosan coatings in the maintenance of strawberry quality during refrigerated storage. Brazilian Journal of Development. 2019;5(6):5434-5448. DOI: https://doi.org/10.34117/bjdv5n6-081
62. Campos R, Kwiatkowski A, Clemente E. Post-harvest conservation of organic strawberries coated with cassava starch and chitosan. Revista Ceres. 2011;58(5):554-560. DOI: https://doi.org/10.1590/S0034-737X2011000500004
63. Bal E. Influence of Chitosan-Based Coatings with UV Irradiation on Quality of Strawberry Fruit During Cold Storage. Turkish Journal of Agriculture-Food Science and Technology. 2019;7(2):275-281. DOI: https://doi.org/10.24925/turjaf.v7i2.275-281.2252
64. El-Miniawy M, Ragab ME, Youssef SM, Metwally A. Response of strawberry plants to foliar spraying of chitosan. Res. J. Agric. Biol. Sci, 2013;9(6):366-372