Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012



Ali Davari
Vahid Hakimzadeh
Elham Mahdian
Mostafa Shahidi-Noghabi


In this work, we have synthesized copper oxide nanoparticles using Iranian violaceae flower extract and explored its biological activity. Green synthesis has emerged as a reliable, sustainable and ecofriendly protocol for synthesizing a wide range of nanomaterials and hybrid materials. In this paper, we report the synthesis of Copper oxide nanoparticles by a simple biological route using the extract of Iranian violaceae flower and CuSO4, 5 H2O was used to synthesis the copper oxide Nanoparticles. The synthesized copper oxide nanoparticles were characterized using UV–visible spectroscopy, FTIR spectroscopy, FESEM, EDAX, and XRD techniques. UV –Visible analysis shows a characteristic peak around 266 nm for copper oxide nanoparticles and which is characteristic copper oxide nanoparticles. FTIR spectroscopy was used to characterize various capping and reducing agents present in the plant extract responsible for nanoparticle formation. The surface morphology was characterized using FESEM. The EDAX and XRD pattern suggested that prepared copper oxide nanoparticles were highly pure. The average particle size was calculated as 78.5 nm and α-copper oxide for all diffraction peaks (JCPDS card No. 41-1449) using the XRD technique. Our finding also support the synthesis of CuO NPs from Iranian violaceae flower sources due to relative abundance of plants for the production of reducing and stabilizing agents required for CuO NPs synthesis, potential efficiency of plant biomolecules in enhancing the toxicity effect of CuO NPs against microbes, prevention of environmental pollution due of nontoxic chemicals and degradation effectiveness of CuO NPs synthesized from plant sources. Furthermore, this study provides useful information on the rapid synthesis of CuO NPs with desired properties from plant extracts. Copper oxide NPs can have a good candidate for different applications.

Ключові слова:
Для цієї мови відсутні ключові слова


Як цитувати
Davari, A., Hakimzadeh, V., Mahdian, E., & Shahidi-Noghabi, M. (2021). СИНТЕЗ ТА ХАРАКТЕРИСТИКА НАНОЧАСТОК ОКСИДУ МІДІ З ВИКОРИСТАННЯМ ВОДНОГО ЕКСТРАКТУ КВІТКИ IRANIAN VIOLACEAE. Food Science and Technology, 15(3).
Хімія харчових продуктів і матеріалів. Нові види сировини


1. Tabrez S, Musarrat J and Al-khedhairy AA. Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces. 2016;146:70-83.
2. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspochb D, Ameloot R, Evans JD and Doonan CJ. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016;307:237-54.
3. Motakef-Kazemi N and Yaghoubi M. Green Synthesis and Characterization of Bismuth Oxide Nanoparticle Using Mentha Pulegium Extract. Iranian Journal of Pharmaceutical Research. 2020;19 (2):70-79.
4. Nath S, Chakdar D, Gope G, Avasthi D. Characterization of CdS and ZnS quantum dots prepared via a chemical method on SBR latex. Nanotechnol, 2008; 4:1-6.
5. Perez-Mezcua D, Sirera R, Jimenez R, Bretos I, De Dobbelaere C, Hardy A, Baelc MKV, and Lourdes Calzada M. A UV-absorber bismuth(III)-Nmethyldiethanolamine complex as a lowtemperature precursor for bismuth-based oxide thin films. J Mater. Chem. C. 2014;2:8750-60.
6. Hou J, Yang C, Wang Z, Zhou W, Jiao S and Zhu H. In situ synthesis of α-β-phase heterojunction on Bi2O3 nanowireswith exceptional visible-light photocatalytic performance. Appl. Catal. B. 2013;142–143:504-11.
7. Song JY and Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diospyros kaki) leaf extract. Korean J. Chem. Eng. 2009;25: 808-11.
8. Monda S, Roy N, Laskar RA, Sk I, Basu S, Mandal D and Begum NA. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloid Surf. B. 2011;82:497-504.
9. Dobrucka R. Synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herba. Iran. J. Pharm. Res. 2017;16: 753-59.
10. Aromal SA and Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size dependent catalytic activity. Spectrochim. Acta A. 2012;97:1-5.
11. Tavakoli F, Salavati-Niasari M and Mohandes F. Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 2015;63:51-7.
12. Kelkawi AHA, Abbasi Kajani A and Bordbar AK. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol. 2017;11:370-6.
13. Jafari A, Pourakbar L, Farhadi K, Mohamadgolizad L and Goosta Y. Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles. Turk. J. Biol. 2015;39:556-561.
14. Hajiashrafi S and Motakef-Kazemi N. Green synthesis of zinc oxide nanoparticles using parsley extract. Nanomed. Res. J. 2018;3:44-50.
15. Becheri A, Durr M, Nostro PL and Baglioni P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res. 2008;10:679-89.
16. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18:105104.
17. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol. 2009;84:151-157.
18. Ankanna S, Prasad TNVKV, Elumalai EK, Savithramma N. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomater Biostruct. 2010;5(2):369-372.
19. Bera KK, Majumdar M, Chakraborty M and Bhattachary SK. Phase control synthesis of α, β
and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J. Hazard. Mater. 2018;352:182-191.
20. Guin R, Banu A, Kurian G. Synthesis of Copper Oxide Nanoparticles Using Desmodium Gangeticum Aqueous Root Extract. International J Pharm Pharmace Sci. 2015; 7(1).
21. Swarnkar R, Singh S, Gopal R. Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: structural and optical characterizations. B Mater Sci. 2011;34:1363-9.
22. Ethiraj AS, Kang DG. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Res Lett. 2012;7:70
23. Nyquist RA, Kagel RO. Infrared Spectra of Inorganic Compounds New York and London: Academic Press. 1997; 220.
24. Kliche K, Popovic ZV: Far-infrared spectroscopic investigations on CuO. Phys Rev B. 1990; 42:10060-10066.
25. Zheng L, Liu X. Solution-phase synthesis of CuO hierarchical nanosheets at near-neutral pH and near-room temperature. Mater Lett. 2007;61:2222-2226.
26. Nath S, Chakdar D, Gope G, Avasthi D. Characterization of CdS and ZnS quantum dots prepared via a chemical method on SBR latex. Nanotechnol. 2008;4:1-6.
27. Theivasanthi T, Alagar M. X-ray diffraction studies of copper nanopowder. Arch Phys Res 2010;1(2):112-7.
28. Xu C, Lin Y, Xu G, Wang G: Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor. Mater Res Bull. 2002;37:2365-2372.
29. Moulder J, Sticke W, Sobol P, Bomben K. Standard ESCA spectra of the elements and line energy information. In Handbook of X-ray Photoelectron Spectroscopy. Edited by: Chastain J. USA: Perkin Elmer Coorporation: Physical Electronics Division.1992.
30. Zarate RA, Hevia F, Fuentes S, Fuenzalida VM, Zuniga A: Novel route to synthesize CuO nanoplatelets. J Solid State Chem. 2007;180:1464-1469.
31. Hong ZS, Cao Y, Deng JF: A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett. 2002;52:34-38.