Food Science and Technology

ISSN-print: 2073-8684
ISSN-online: 2409-7004
ISO: 26324:2012
Архiви

XYLOOLIGOSACCHARIDES FROM AGRICULTURAL BY-PRODUCTS: CHARACTERISATION, PRODUCTION AND PHYSIOLOGICAL EFFECTS

##plugins.themes.bootstrap3.article.main##

L. Kaprelyants
O. Zhurlova
T. Shpyrko
L. Pozhitkova

Анотація

The current study is a review of characteristics, production, physiological properties and application of xylooligosaccharides (XOS). XOS are the carbohydrates, their molecules are built from xylose residues linked mainly by в-(1→4)-glycoside bonds. Xylan is important for plant cell walls and is widely spread component in agricultural by-products. XOS are products of xylan hydrolytic degradation, and exhibiting the high prebiotic potential. The XOS preparation of wheat and rye bran stimulated the cells accumulation ‑ 1,4∙1010 CFU/cm3 of L. аcidophilus and 9,2∙1010 CFU/cm3 of В. bifidum. A difference in XOS molecules branching causes a wide range of their physiological properties: antioxidant, immunomodulation, antimicrobial, anti-inflammatory, anticarcinogenic. XOS can reduce high cholesterol level and triglycerides in blood plasma. XOS application reviewed in this article opens new perspectives on its potential use for human consumption. The rich sources of xylan are wheat, rye and barley bran, rice husk, wheat straw, corncobs, cotton stalk. Industrial way of XOS production includes chemical or enzymatic hydrolysis with following purification. Chemical methods are based on hydrothermal pretreatment and acidic or alkali extraction. Obtained oligosaccharides have a wide range of polymerization degree (DP) from 2 to 20. Enzymatic methods include fermentation with xylanase that allow controlling the XOS accumulation with certain DP. The different chromatographic purification after hydrolysis is used for analytical purposes. There are anion-exchange, size-exclusion, affinity, size-exclusion high-performance liquid chromatography. In addition, biomethods are preferred for XOS used in food, because such preparations do not contain monosaccharides and furfural as contaminants. XOS are stable in a wide range of temperature and pH, justifying the development of new synbiotics generation. Most widely XOS are used in production of functional products and pharmaceutical preparations. But they are also applied in cosmetic, agricultural and mixed feed industries.
Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
Kaprelyants, L., Zhurlova, O., Shpyrko, T., & Pozhitkova, L. (2017). XYLOOLIGOSACCHARIDES FROM AGRICULTURAL BY-PRODUCTS: CHARACTERISATION, PRODUCTION AND PHYSIOLOGICAL EFFECTS. Food Science and Technology, 11(3). https://doi.org/10.15673/fst.v11i3.606
Розділ
Біопроцеси, біотехнологія харчових продуктів, БАР
Біографія автора

L. Kaprelyants, Одеська національна академія харчових технологій

Кафедра харчової хімії, доцент

Посилання

1. Carvalho AFA, de Oliva Neto P, da Silva DF, Pastore GM. Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International. 2013 Apr; 51(1): 75–85. doi: 10.1016/j.foodres.2012.11.021

2. O'Shea N, Arendt EK, and Galaghar E. Dietary Fibre and phytochemical characteristics of fruits and vegetables byproducts and their recent applications as novel ingredients in food products. Innovative Food Science and Emerging Technologies. 2012; 16: 1-10. doi: 10.12691/jfnr-1-3-1

3. Iorgacheva EG, Kaprelyants LV, Velichko TA. Fermentirovannyie osaharennyie zernovyie produktyi – multifunktsionalnyie pischevyie ingredientyi. Khranenie zerna i pererabotka. 2003; 9(51): 49-52.

4. Varques MJ, Alonso J, Dominguez H. Xylooligosaccharides: manufacture and applications. Ntrends Food Sci. Technol. 2000; 11: 3981-3988

5. Moure A, Gullуn P, Domнnguez H, Parajу JC. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry. 2006; 41: 1913–1923. doi:10.1016/j.procbio.2006.05.011

6. Jain I, Kumar V, Satyanarayana T. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefit. Indian Journal of Experimental Biology. 2015, Mar; 53: 131-142

7. Elsevier BV. Cereal straw as a resource for sustainable biomaterials and biofuels. Amsterdam; 2010.

8. Aachary AA, Prapulla SG. Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications. Food Science and Food Safety. 2011; 10(1): 2–16. doi: 10.1111/j.1541-4337.2010.00135.x

9. Samanta AK, Jayapal N, Jayaram C, Sohini R, Kolte AP, Senani S, Sridhar M. Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre. 2015; 5: 62–71. doi: 10.1016/j.bcdf.2014.12.003

10. Ebringerovб A. Structural diversity and application potential of hemicelluloses. Macromolecular Symposia. 2005 Feb; 232(1): 1-12.

11. Sedlmeyer FB. Xylan as by-product of biorefineries: characteristics and potential use for food applications. Food Hydrocolloids. 2011; 25(8): 1891-1898. doi: 10.1016/j.foodhyd.2011.04.005

12. Rakha A. Characterisation of Dietary Fibre in Cereal Grains and Products Emphasis on Triticale and Rye Faculty of Natural Resources and Agricultural Sciences. Thesis of Ph.D. Department of Food Science Uppsala: Sweden. 2011.

13. Johansson M. Dietary fibre composition and sensory analysis of heat treated wheat and rye bran. Second cycle, A2E. Uppsala: SLU, Dept. of Food Science [Internet]. 2012 [cited 2012 Sep 07]; [about 26pp.]. Available from: http://stud.epsilon.slu.se/4771/

14. Burton RA, Fincher GB. Evolution and development of cell walls in cereal grains. Front Plant Sci. 2014; 5: 1-15. doi: 10.3389/fpls.2014.00456

15. Gullуn P, Gonzбlez-Muсoz MJ, Parajу JC. Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes. Bioresour Technol. 2011 May;102(10):6112-9. doi: 10.1016/j.biortech.2011.02.059.

16. Gullуn P, Salazar N, Gonzбlez-Muсoz M J, Gueimonde M, Ruas-Madiedo P, de los Reyes-Gavilбn CG., Parajу JC. Assessment on the fermentsbility of xylooligosaccharides from rice husks. BioResources. 2011; 6(3): 3096-3114.

17. McNab JM, Boorman KN. Poultry feedstuffs. Supply, composition and nutritive value. Poultry Science Symposium Series. England: Carfax Publishing Company; 2002.

18. Garrote G, Domнnguez H, Parajу JC. Autohydrolysis of corncob: study of non-isothermal operation for xylo-oligosaccharide production wood. Journal of Food Engineering. 2002; 52(3): 211–218.

19. Teleman A, Lundqvist J, Tjerneld F, Stalbrand H, Dahlman O. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr. Res. 2000 Dec; 329(4): 807–815.

20. Otieno DO, Ahring BK. A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosacharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses. Biores Techol. 2012 May;112: 285-292. doi: 10.1016/j.biortech.2012.01.162.

21. Nabarlatz D, Torras C, Garcia-Valls R, Montane D. Purification of xylooligosaccharides from almond shells by ultrafiltration. Separat. Purificat. Technol. 2007; 53(3): 235–243. doi:10.1016/j.seppur.2006.07.006

22. Nabarlatz D, Farriol X, Montane D. Autohydrolysis of almond shells for the production of xylooligosaccharides: product characteristics and reaction kinetics. Indust. Engineer. Chem. Res. 2005; 44(20): 7746–7755. doi: 10.1021/ie050664n

23. Kaprelyants LV. Prebiotiki: himiya, tehnologiya, primenenie. Kiev: EnterPrint; 2015.

24. Ergues I, Sanchez C, Mondragon I, Labidi J. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicellulose from corn stalks. Bioresource Technology. 2012 Jan; 103(1): 239–248. doi: 10.1016/j.biortech.2011.09.139.

25. Ruzene DS, Silva PD, Vicente AA, Goncalves AR, Teixeira JA. An alternative application to the Portuguese agro industrial residue: Wheat straw. Applied Biochemistry and Biotechnology. 2008 Mar; 147(1-3): 85–96. doi: 10.1007/s12010-007-8066-2.

26. Akpinar O, Erdogan K, Bostanci S. Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioproducts and Processing. 2009 June; 87(2): 145–151. doi: 10.1016/j.fbp.2008.09.002

27. Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT. Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresource Technology. 2012 May; 112: 199–205. doi: 10.1016/j.biortech.2012.02.036.

28. Sun JY, Liu MQ, Weng XY, Qian LC, Gu SH. Expression of recombinant Thermomonospora fusca xylanase A in Pichia pastorisand xylooligosaccharides released from xylans by it. Food Chem. 2007; 104 (3): 1055–1064.

29. Yuan X, Wang J, Yao H. Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chem. 2004; 90: 759–764. doi:10.1016/j.foodchem.2007.01.028

30. Lin YS, Tseng MJ, Lee WC. Production of xylooligosaccharaides using immobilized endo-xylanase of Bacillus halodurans. Process Biochemistry. 2011; 46: 2117–2121.

31. Shinoyama H., Yasui T. Superiority of Aspergillus niger в- xylosidase for the enzymatic synthesis of alkyl в-xylosidases in the presence of a variety of alcohols. Agric. Biol. Chem. 1988; 52:2197-202

32. Swennen K, Courtin CM, Van der Bruggen B, Vandecasteele C, Delcour JA. Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydr. Polym. 2005; 62(3): 283–292. doi:10.1016/j.carbpol.2005.08.001

33. Montane D, Nabarlatz D, Martorell A, Torne-Fernandez V, Ferrero V. Removal of lignin and associated impurities from xylooligosaccharides by activated carbon adsorption. Indused Engineer Chem Res. 2006; 45(7): 2294-302. doi: 10.1021/ie051051d

34. Nabarlatz D, Ebringerovб A, Montanй D. Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydrate Polymers. 2007 May; 69: 20–28. doi:10.1016/j.carbpol.2006.08.020

35. Wang J, Yuan X, Sun B, Cao Y, Tian Y, Wang C. On-line separation and structural characterization of feruloylated oligosaccharide from wheat bran using HPLC-ESI-MS. Food Chemistry. 2009; 115(4): 1529–1541. doi: 10.1016/j.foodchem.2009.01.058

36. Mussatto SI, Mancilha I M. Non-digestible oligosaccharides: A review. Carbohydrate Polymers. 2007 Apr; 68(3): 587–597. doi: 10.1016/j.carbpol.2006.12.011

37. Tugland BC, Meyer D. Non-digestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr. Rev. Food Sci. Food Safety. 2002 Oct; 1(3): 73–92. doi: 10.1111/j.1541-4337.2002.tb00009.x

38. Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology. 2001 Nov; 91(5): 878–887

39. Aachary AA Bioactive xylooligosaccharides from corncob: enzymatic production and applications. Thesis Ph. D. Mysore, India. 2009 Apr.

40. Kaprelyants LV, Zhurlova OD. Poluchenie prirodnyih ksilooligosaharidov-prebiotikov iz vtorichnyih produktov pererabotki zerna. Sbornik tezisov tretey konferentsii molodyih uchYonyih “Biologiya rasteniy i biotehnologiya”. 2017; К: NAU: 79.

41. Kontula P, Von Wright A, Mattila-Sandholm T. Oat bran в-gluco- and xylooligosaccharides as fermentative substrates for lactic acid bacteria. Int. J. Food Microbiol. 1998; 45: 163–169.

42. Fooks LJ, Gibson GR. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS. Microbiol. Ecol. 2002 Jan; 39(1): 67–75. doi: 10.1111/j.1574-6941.2002.tb00907.x.

43. Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Macris BJ, Stamatis H, Skaltsa H. Antimicrobial activity of acidic xylooligosaccharides produced by family 10 and 11 endoxylanases. Int. J. Biolog. Macromol. 2003 Jan; 31(4-5): 171–175.

44. Singh RD, Banerjee J, Arora A. Prebiotic potential of oligosaccharides: a focus on xylan derived oligosassharides. Bioactive carbohydrates and dietary fiber. 2015 Jan; 5(1): 19-30. doi: 10.1016/j.bcdf.2014.11.003

45. Vazquez MJ, Alonso JL, Domэnguez H, Parajo JC. Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology. 2000 Nov; 11(11): 387–393. doi: 10.1016/S0924-2244(01)00031-0

46. Gibson GR, Rastall RA. Prebiotics: Development and Application. England: John Wiley & Sons; 2006.

47. Gaupta PK, Agrawal P, Hegde P. A Review on Xylooligosaccharides. International Research Journal of Pharmacy. 2012; 3(8): 71-74

48. Gupta PK, Agrawal P, Hegde P, Shankarnarayan N,Vidyashree S, Singh SA, Ahuja S. Xylooligosaccharide a valuable material from waste to taste: a review. Journal of Environmental Research And Development. 2016; 10(3): 555-563.