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Homotopy properties of smooth
functions on the Mobius band

Iryna Kuznietsova, Sergiy Maksymenko

Abstract. Let B be a Mobius band and f : B — R be a Morse map taking
a constant value on ¢B, and S(f,?B) be the group of diffeomorphisms h of
B fixed on 0B and preserving f in the sense that f o h = f. Under certain
assumptions on f we compute the group moS(f, 0B) of isotopy classes of
such diffeomorphisms.

In fact, those computations hold for functions f : B — R whose germs at
critical points are smoothly equivalent to homogeneous polynomials R? — R
without multiple factors.

Together with previous results of the second author this allows to compute
similar groups for certain classes of smooth functions f : N — R on non-
orientable compact surfaces N.

Amwnorauisi. Hexaii B — crpiuka Mebiyca i f : B — R — ¢yuxuis Mopca, sxa
upwuiimMae nocriitne 3HaueHnst Ha Mexi 0B. Tlosnaunmo 1epes S(f, 0B) rpymy
nudeomopdizmie h nmoBepxui B Hepyxomux mHa Mexi 0B i 36epiraounx fy
ToMmy cenci, mo f o h = f. B pobori nmokazano, mo yHKIisA [ 3aBXKIM Mae
€MHy KPUTHYHY KOMIIOHEHTY 3B’a3HOCTI K JedKOI MHOXKMHU PIiBHSI, TaKy,
mo K ¢ imBapianTaoo Bimnocuno S(f, 0B), a nonosrenns B\Nk 10 aedakoro
BizkpuToro okosty Ni kKommoneHTu K € 00’e€HaHHIM 3aMKHEHUX 2-JTUCKiB
Xi1,..., X, Ta omHOrO IUIIHIpPA, OO0 MiCTUTH 0.

Binbm Toro, 3a ymosn, mo S(f, 0B) 3ammmae iHBAPIaHTHAM TAKOK KOZKEH
muck X;, obuncieno rpyny moS(f,0B) kmacis izoromnil audeomopdizmis 3
S(f,?B). Ilokazano, mo

n
mS(f,0B) 2 Z x | [ moS(f|x,,0X:),
i=1
ne S(f|x,;,0X;) — anasnoriuni rpynu jyist oomexenrs [ Ha X;.

Hacnpasii 11e TBEp/2KeHHS BCTAHOBJIEHE JIjI HabATraTo MUPIIOl HizK (pyHK-
il Mopca muoxkunn dyukniit f : B — R, gxi ragko ekBiBaseHTHI 01HODI-
HAM MHOTOYJIEHAM 0€3 KPATHUX MHOYKHWKIB B OKOJI KOYKHOI CBOET KpUTHIHOT
TOYKH.
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Pazom 3 momepeaiMm pesyibTaTaMu Ipyroro aBTopa Ieil pesysibrar J103-
BoJIsie obuncsuTy anasnoriuti rpymu oS (f, ON) juist nesikux Kiacis dbyHKI
f: N — R ma 1oBiIbHIX KOMIAKTHAX HEOPIEHTOBHUX MOBEPXHAX IV.

1. MAIN RESULT

Let M be a smooth compact surface, i.e. a 2-dimensional manifold, which
can be disconnected, non-orientable, and have a non-empty boundary, and
P be either a real line R or a circle S'. Then the group D(M) of C*-
diffeomorphisms of M acts from the right on the space of smooth maps
C*®(M, P) defined by the following rule: the result of the action of a diffeo-
morphism h € D(M) on f € C*(M, P) is the composition f o h. Then for
each f e C*(M, P) one can define the stabilizer of f

S(f)={heDM) | foh=f}

and its orbit
O(f) ={foh|heDM)}

with respect to the above action.
More generally, denote by D(M, X) the group of diffeomorphisms of M
fixed on a closed subset X < M. Let also

S(f,X)=8(f) nD(M,X) and O(f,X)={foh|heDO, X))}

We will endow D(M, X) and C*(M, P) with Whitney C*-topologies and
their subspaces S(f, X) and O(f, X) with induced ones. Then they yield
certain topologies on the stabilizers and orbits of maps f € C*(M, P). Let
also Dijq(M, X) and Siq(f, X) be the identity path components of D(M, X)
and S(f,X), and O¢(f, X) be the path component of O(f, X) containing
f- If X =&, then we will omit X from notation.

In the present paper we continue study of the homotopy types of S(f, X)
and O(f, X), see below for references and the history of the problem. Our
main results, Theorems 1.4 and 1.5, concern with the group myS(f, X) for
the case when M is a Mébius band, X = dM, and f : M — P belongs to
the following space of maps F (M, P).

Definition 1.1. Let F(M,P) be the subset of C*(M, P) consisting of
maps f : M — P having the following properties:

(1) the map f takes constant values at each connected component of
0M and has no critical points on it;

(2) for every critical point z of f the germ of f at z is C* equivalent to
some homogeneous polynomial v: R? — R without multiple factors.
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A map f e C*(M, P) will be called Morse, if it satisfies condition (1) and
all its critical points are non-degenerate. Denote by M(M, P) the space of
all Morse maps. A Morse map f is generic, if it takes distinct values at
distinct critical points.

Since the polynomial +z2 + 42 is homogeneous and has no multiple fac-
tors, it follows from Morse lemma that

M(M,P)c F(M,P).

Also notice that every f € F(M, P) has only isolated critical points. A
structure of level set foliations near critical points of f € F(M, P) is illus-
trated in Figure 1.1. A critical point of f € F(M, P) which is not a local
extreme will be called a saddle.

= <= sk
= I =K

local extreme saddles

FIGURE 1.1. Topological structure of level-sets of maps from
F(M, P) near critical points

Let f e F(M,P), ce R, and K be a connected component of the level-
set f~1(c). Then K will be called regular whenever it contains no critical
points, and critical otherwise. A connected component U of f~![c—¢,c+¢]
containing K will be called an f-regular neighborhood of K if U\K contains
no critical points and does not intersect 0M.

Let U = Uy uUs u -+ u Ug be a disjoint union of connected one- and
two-dimensional submanifolds of M. We will say that U is an f-adopted
submanifold if for each ¢ =1, ...,k the following conditions hold:

(1) if dimU; = 1, then U; is a regular connected component of some
level-set f~1(c), ce R;
(2) if dim U; = 2, then the connected components of the boundary oU;
are regular connected component of some level-sets of f.
In particular, an f-regular neighborhood is an f-adopted subsurface. Evi-
dently, if U is an adopted subsurface, then the restriction f|y belongs to
the space F (U, P).
Denote
S'(f,X) = S(f) n Du(M, X).
The following statement collects known information about the homotopy
types of stabilizers and orbits of f € F(M, P).
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Theorem 1.2. Let M be a connected compact surface, f € F(M,P), and
X be a union of finitely many connected components of some level-sets of
f and some critical points of f. Then the following statements hold.

(1) The map p : D(M,X) — O(f,X) defined by p(h) = foh is a
locally trivial principal S(f, X)-fibration. In particular, the restriction map
p:Dia(M, X) — Of(f, X) is a locally trivial principal S'(f, X )-fibration as
well, [20], [11].

(2) The group Siq(f, X) is homotopy equivalent to the circle if and only
if the following condition hold:

o M is orientable, x(M) = 0, X is a collection of at most x(M) critical

points of f, and each critical point of f is a non-degenerate local extreme.

Otherwise, Siq(f, X) is contractible, and in this case

(a) if M = S%, X = @, and f is Morse having exactly two critical points
(minimum and mazimum), then Of(f) is homotopy equivalent to
S?;

(b) otherwise, if M = S? or RP?, and X = @, then m,0¢(f) = m. 5>
fork = 2;

(c) otherwise, m,Of(f, X) =0 for k =2, [11], [13].

(3) Suppose Sia(f, X) is contractible. Then we have the following short
exact sequencel:

mDia(M, X) Lo 10(f, X) — m0S'(f, X). (1.1)

If x(M) < |X|, the group Diqa(M, X) is contractible as well, and (1.1) yields
an isomorphism

7T1©f(f7X) = WOS/(va)v
see [11], [13].

(4) O¢(f,X) = Os(f, X U V) for any union of boundary components V'
of M, [14].

(5) If f is Morse and has exactly n critical points, then O¢(f) is homo-
topy equivalent to a certain covering space of the n-th configuration space
of M, which in turn is homotopy equivalent to some (possibly non-compact)
(2n —1)-dimensional CW-complez. In particular, m11O¢(f) is a subgroup of
the n-th braid group B, (M) of M, [18].

(6) Suppose f is generic. If M = S? and f has exactly two critical points
being local extremes, then Of(f) is homotopy equivalent to S2. Otherwise,
if M = S* or RP?, then Of(f) is homotopy equivalent to SO(3) x (S')*

! Throughout the paper the arrow — means “monomorphism” and — means “epimor-
phism”.
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for some k = 0. In all other cases Of(f) is homotopy equivalent to (S1)*
for some k =0, [11].

(7) Suppose M is orientable, f € M(M,R), and x(M) < |Fix(S'(f))|
(which holds e.g. if x(M) < 0 or if f is generic and has at least one
saddle critical point). Then Of(f) has the homotopy type of the quotient
(SHYF /G of (SY)* by a free action of some finite group G if M = S?, and
the homotopy type of ((SY)*/G) x SO(3) if M = S2, [6], [7], [8], and also [9]
for extensions to functions with prescribed local singularities of A, -types,
weN.

Results in (7) are obtained by E. Kudryavtseva.

Notice that in the case (c), e.g. when if M is distinct from 2-sphere
and projective plane, then Of(f) is aspherical, and so its homotopy type
is completely determined by the fundamental group m1O¢(f).

If f is generic, then by (6) O¢(f) is homotopy equivalent to some torus
(SY)*, whence m1Of(f) = ZF is free abelian.

Suppose M is orientable and differs from S%. Then by (7) we have
a certain free action of a finite group G on the torus (S)*. Hence the
quotient map ¢ : (S1)* — (S1)*/G is a locally covering map, whence we
have the following short exact sequence:

(S o (/G - G,
which due to (7) can be rewritten as follows:
ZF < mO(f) — G.

This sequence was first discovered in [11, Eq. (1.6)]. In particular, it implies
that 71 Of(f) is a crystallographic group, i.e. contains a free abelian normal
subgroup of finite index. Moreover, due to (5) m1O¢(f) is also a subgroup
of a certain braid group B, (M) of M. Since B,(M) has no elements of
finite order, so does m O (f), and therefore it is a Bieberbach group.

To describe further known results, for every f-adopted connected sub-
surface X ¢ M let

Pr(X) :=mOp (flx)-

be the fundamental group of the orbit of the restriction of f to X. In
particular, if either dM is non-empty or x(M) < 0, then we get from
Theorem 1.2 the following isomorphisms:

Pr(M) = mOs(f) 2 mOpf,oM) L mS'(f,0M).  (1.2)

The following statement summarizes several results about P¢(M).
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Let G be a group and m > 1. Then the group Z naturally acts on m-th
direct product G™ by cyclic shifts of coordinates, that is

k‘ . (ao,al, Ce ,am_l) = (an,am_l, Ce ,an_l),

for all k € Z and a; € G, where all indices are taken modulo m.
Similarly, for m,n > 1 the elements of the group G™" can be regarded as

. 0
mxn matrices (a; ])3 0m o ! with entries in G. Hence one can define an ac-

tion of the group Z? on Gmn defined by (kv l) : (ai,j) = (ai—l-k mod m, j+lmodn)7
that is (k,[) € Z? makes k cyclic shiftts of rows and [ cyclic shifts of columns
of the matrix (a; ;).

Evidently, both actions are non-effective. Let

Gl1Z:=G" %L G Z%:=G" %1
m m,n

be the semidirect products corresponding to the above actions.

Thus G Z is a cartesian product of sets G x Z with the following

. m
operation:

(ao, ..., am—1,k)(bo,...,bm—1,1) = (aobg, a1bgs1, -+, ambp—1,k +1).

The multiplication in G ¢ Z? is defined in a similar way.
m,n

Evidently, G1Z =G xZ, G 1 Z* =G x Z*, and {1} 1 Z = Z.
1 1,1 m

)

Theorem 1.3. [12], [15], [16], [17], [3], [4]. Let M be a compact surface.
Then for each f € F(M, P) there exist mutually disjoint f-adopted subsur-
faces Y1,...,Y, € M each containing critical points of f and having the
following properties.

(1) If x(M) < 0, then eachY; is either a 2-disk or an annulus or a Mdébius

band, and
M) =[[Pr(v)
=1

(2) Suppose M is a 2-disk and f has a unique critical point z being therefore
a local extreme. If z is non-degenrate, then Py(M) = {1}. Otherwise
Pp(M) = Z.

(3) If M is an annulus and f has no critical points, then Pr(M) = {1}.

(4) If M is a 2-disk or an annulus and f has saddle critical points, then each
Y, is a 2-disk, and after a proper renumbering them with two indices
{Y; ;} the group Py(M) is isomorphic with one of the following groups:

H(HPf ) zZ) Zxﬂ(]_[@f i) 12),

=1 ki
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for some a,b;, k;,i=1,...,a.
(5) Suppose M = T? is a 2-torus.
(a) If the Kronrod-Reeb graph L'y of f (see §2 for definition) is a tree,
then each Y; is a 2-disk, and

Pp(T?) = (ﬁ Pr(Yr)) 2bZQ.
k=1 @

for some a,b = 1.
(b) Otherwise, I'y contains a unique cycle, n =1, Y1 is an annulus,
and
Pr(T?) = Ps(Y1) szz
for some k = 1.

Notice that in this theorem Pr(M), P¢(Y;), P¢(Y;;) can be replaced by
either of the groups of type (1.2). On the other hand, Pf(T?) = m Oy (f)
is not the same as mpS’(f) since mD(T?) =~ Z? and due to (1.1) we have
the following short exact sequence: Z? — m1O¢(f) — mS'(f).

Theorem 1.3 shows that for most surfaces (possibly except for 2-sphere,
projective plane and Klein bottle) computation of P¢(M) reduces to the
cases of 2-disk and Mobius band. Indeed, the cases (1) and (5) reduce
computation to 2-disks, annuli and Mdobius bands. Furthermove, in the
case (4) each Y;; contains less critical points than f, whence the group
P¢(Y; ;) has similar structure, and one can use induction on the number of
critical points of f with initial inductive step given by cases (3) and (4).

Our aim is to describe the structure of Py(M) for the case when M is a
Mobius band and under certain restrictions on f € F(M, P). The remained
open cases are 2-sphere and all non-orientable surfaces.

Theorem 1.4. Let B be a Mdobius band and f € F(B,P). There ezists
a unique critical component K of some level-set of f with the following
properties: if W is an f-reqular neighborhood of K and Yy,Y1,...,Y, are
all the connected components of B\W enumerated so that 0B < Yy, then

Yy is an annulus S' x [0,1], and each Yy, k = 1,...,n, is a 2-disk. In
particular,
hK) =K, h(Yo) = Yo, h(kQ1 Vi) = kgl Y,

for each h e S(f).

Let Y = {Y1,...,Y,} be the family of all connected components of B\W
being 2-disks as in Theorem 1.4. Since kgl Y} is invariant with respect to

S(f,0B), we have a natural action of S(f,0B) on Y by permutations.
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Let us fix an orientation of each Vi, k = 1,...,n, and put Y = Y x {£1}.
Then the action of S(f,0B) on Y extends to an action on Y defined by
the following rule: if h € S(f,0B) and Yy € Y, then h(Yj,+1) = (h(Y%),0)
and h(Yy,—1) = (h(Y%),—0), where

5— +1, if the restriction hly, : Y;, — h(Y})) preserves orientation,
—1, otherwise.

Let @ be the normal subgroup of S(f, 0B) consisting of diffecomorphisms
preserving each Yj with its orientation. In other words, Q) is the kernel
of non-effectiveness of the action of S(f,dB) on Y. Hence the action of
the quotient S(f,0B)/Q on Y is effective. However the induced action of
S(f,0B)/Qf on'Y is not in general effective.

Theorem 1.5. The quotient group S(f,0B)/Qy freely acts on Y, and we
have an isomorphism

TR = Z H'Pf(yz) (1.3)
i=0
In particular, if S(f,0B) = Qy, then

Pr(B) = Z x | [ Pr(Y7). (1.4)
=0

The case when the group S(f,0B)/Qy is non-trivial will be considered
in another paper.

Due to (1) of Theorem 1.3 a knowledge of P;(B) will allow to compute
P¢(M) for all non-orientable surfaces with x(M) < 0. Together with re-
sults of [10], describing algebraic structure of Py(M) for M being 2-disk
and annulus, this will give a complete description of the groups Py(M)
for all compact surfaces except for 2-sphere, projective plane, and Klein
bottle. Also during the proof of Theorem 1.5 we will get a more detailed
information about Py(B).

Examples. Let A = S'x [0, 1] be an annulus, £(¢,t) = (¢+m,1—t) be the
involution without fixed points and changing orientation of A, so B = A/¢
is a Mobius band, and the quotient map p: A — B is an orientable double
covering of B. Figure 1.2 contains examples of critical components K level-
sets of Morse functions f : B — R described by Theorem 1.4 and their
preimages in A. In order to simplify the illustration we denote by Y; the
connected components of B\K (not of B\IW as in Theorem 1.4), and by
X! and X! connected components of p~1(Y;) for i > 1.
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FIGURE 1.2. Critical level sets of several functions on the
Mobius band

Case (a). There exists h € S(f, dB) such that h(Y7) = Y7 and it reverses
orientation of Y;. Then S(f,0B)/Qs = Zo and this group is generated
by the isotopy class of h. Moreover, the action of S(f,dB)/Qf on Y is
transitive.

Case (b). In this case S(f,0B)/Qs = 7Z4 is generated by the isotopy
class of h € S(f,0B) such that h(Y1) = Ya, h(Y2) = Y; and h? reverses
orientations of both Y; and Y. Now the action of S(f,0B)/Qy on Y is
transitive as well.

Case (c). Evidently, each h € S(f,0B) preserves each Y;, i = 1,2, 3, with
its orientation. This means that S(f,0B) = Qy, so the group S(f,0B)/Qy
is trivial.

Case (d). Now S(f,0B)/Qf = Zy is generated by the isotopy class of
h e S(f,?B) such that

h(Y1,+) = (Y1, —), h(Yz,+) = (Y2,—), h(Ys) = (Ya), h(Yi) = (Ys).

Structure of the paper. In §2 we recall the notion of the Kronrod-Reeb
graph of a map f € F(M, P), and in §3 prove of Theorem 1.4. §4 contains
certain results about relations of diffeomorphism groups of a non-orientable
manifold and its double covering. In §5 we recall the notion of a Hamil-
tonian like flow for a function on an orientable surface. In §6 we introduce
several subgroups of S(f) and prove Theorem 6.2 allowing to “simplify” dif-
feomorphisms from the stabilizer of f € F (M, P). These results extend [10,
§3 & §7| to non-orientable case. §7 describes the relation between the
groups S(f,0A) and S'(f,0A) for functions on the annulus A = S x [0, 1],
see Lemma 7.1. Finally in §8 we prove Theorem 1.5.
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2. KRONROD-REEB GRAPH

Let M be a compact surface. Given f € F(M, P) consider the partition
of M into connected components of level sets of f. Let also I'y be the set
of elements of that partition and p : M — I'y be the quotient map. Endow
I'y with the corresponding quotient topology, so a subset W < I'; is open
if and only if p~1(W) is open in M.

Since f takes constant values on connected components of M and has
only finitely many critical points, it follows that I'y is a “topological graph”,
i.e. a one-dimensional CW-complex. It is also called the Kronrod-Reeb
graph or simply the graph of f.

The following statement is well known for Morse maps, and can easily be
extended to maps M — P with isolated critical points and taking constant
values at each connected component of 0 M.

Lemma 2.1. cf. [2, Corollary 3.8|. Let f € F(M,P). Then the quotient
mapping p : M — I'y induces an epimorphism

ps : Hi(M,0M,7) — H(I'y,Z)

between the corresponding integer homology groups.

Proof. One easily shows that there exists a continuous map s : I'y — M
such that p o s is homotopic to idr,, so s is a “homotopical section” of the
map p: M — I'y. Hence we get the following commutative diagram

Hl (M7 Z)
/ K
id
H\(T'y,7) : Hy(T'y,7)
implying surjectivity of p. (]

Corollary 2.2. Let M be either a 2-sphere or a projective plane with k = 0
holes. Then for each f € F(M,P) the homomorphism py is zero, whence
the Kronrod-Reeb graph I'y of f is a tree.

Proof. Indeed, for such surfaces the homomorphism
ix 1 H1(OM,Z) - H1(M,Z)

induced by the inclusion i : 0M < M is surjective. Since f takes constant
values at boundary components of M, it follows that ps o i, = 0, whence
P« is zero epimorphism. Therefore Hy(I'f,Z) = 0 and so I'y is a tree. [
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3. PROOF OF THEOREM 1.5

Let B be a Mobius band, f € F(B, P), and I'y be the Kronrod-Reeb of f
being due to Corollary 2.2 a tree. We have to find a connected component
K of some level set of f satisfying statement of Theorem 1.5.

Recall that up to an isotopy and changing of orientation there are exactly
two classes of two-sided simple closed curves on Mobius strip:

(B) a curve isotopic to dB and dividing B into an annulus and a Mobius
strip;

(N) a null-homotopic curve dividing B into a 2-disk and a Mdbius strip
with a hole.

In particular, each regular component ~ of each level-set of f is a two-
sided simple closed curve in B, and so it has one of the above types (B) or
(N). Notice that p(7y) is an internal point of some open edge e of I'y. If +/
is another regular component of some level set such that p(y') € e, then +/
is isotopic to 7, and therefore it has the same type (B) or (N) as . Hence
one can associate to each edge e of I'y the type (B) or (N) being the type
of p~1(w), where w is any point in e.

Therefore Theorem 1.5 can be reformulated as follows: there exists a
unique vertex v € I'y having ezactly one incident (B)-edge. In that case
K =pt(v).

For the proof we need the following lemma. Denote by vg = p(0B) the
vertex of I'y corresponding to the boundary of B.

Lemma 3.1. (i) A vertex v e I'y can not have more than two incident
(B)-edges.

(ii) Let e be an open (N')-edge, w € e be a point, and T,, be a connected
component of I f\w that does not contain vg. Then every edge in T, is of
type (N) as well.

Proof. (i) Let p~!(v) be the critical component of some level set of f
corresponding to v, eq,..., e, be all the (B)-edges incident to v, and ~;,
i =1,...,m be a connected component of a level-set of f corresponding

to some point of e;. Let also @ = B\ 4@1 i, and Qg, @1, ..., Qk be all the
1=

connected components of ). One can assume that p~!(v) = Qg, whence
m _
Ui < Qo
=1

as well.

Now by assumption any two curves «; and ~y; are disjoint, not null ho-
motopic, and isotopic each other. Hence they bound an annulus A;; in B
with 6Aw =Y Y "yj.
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Assume now that m > 3, so we have at least three annuli A5, A13 and
Aoz. Then their union Z = A9 U A3 U Asg is connected.
If the interiors of those annuli were mutually disjoint, then

(A12\71) N Aoz =72 = @, (A13\71) N Agg =73 = &,

whence
Z\m = (A12\m) U Az U (A13\m1)
would be connected which contradicts to the property that B\7y; is discon-
nected.
Hence, renumbering indexes if necessary, one can assume that A1 < A3,
and so o < IntAy3. But 72 < Qq as well, whence

Qo A13\(’Yl U Y2 U 73) = IntAqs U IntAsg,

and therefore )y is contained either in IntA; or in IntAgs. Assume for
definiteness that Qo < IntAje. Then Q9 < A12 < B\y3 which contradict

to the assumption that ,731 v © Qo. Hence m < 2.
1=

(ii) Notice that p~1(T,) is an open disk. Hence if ¢/ = T, is an open
edge and w' € €' is a point, then the curve p~!(w) bounds in p~(T},) a
disk, and so €’ is of type (N). O

Now we can finish Theorem 1.5. First we show that such a vertex v
exists. Let vg = p(0B), and ey = (vo,v1) be a unique edge of I'y incident to
vo, where vy is another vertex of eg. Evidently, e is of type (B). If there is
no other (B)-edges incident to vy except for eg, then v = vy is the required
vertex.

Otherwise, due to (i) of Lemma 3.1 exists a unique (B)-edge e; = (v1, v2)
incident to v; and distinct from eg. Applying the same arguments to e;
and so on we will stop (due to the finiteness of I'f) at a unique path

ey = (vo,v1),e1 = (V1,02),...,€m = (U, V)

of mutually distinct (B)-edges such that its end vertex v has a unique (B)-
edge.

Let us prove a uniqueness v. Let v’ be a vertex of I'y distinct from v and
k be the number of (B)-edges incident to v'. We should prove that k = 0
or 2. If v/ € m, then by the construction k = 2.

We claim that k& = 0 for all other vertices. Indeed, let T be the connected
component of the complement I'f\m containing v. Then T is a subtree
having a unique common vertex, say v;, with the path 7. Let ¢/ = (v;,v])
be a unique edge belonging to 7. Then by the construction €’ is of type
(N'), whence by (ii) of Lemma 3.1 all other edges of T are also of type (N).
In particular, so are all edges incident to v’, whence k = 0. U
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4. DIFFEOMORPHISMS OF NON-ORIENTABLE MANIFOLDS

Let N be a smooth non-orientable connected manifold of dimension m,
p: M — N be the oriented double covering of N, and £&: M — M be
the corresponding C* diffeomorphism without fixed points generating the
group Zs of covering transformations, that is €2 = idy; and po & = p.

A diffeomorphism h € D(M) will be called symmetric if it commutes
with &, that is ho& = £oh. Denote by D(M, X) the group of all symmetric
diffeomorphisms of M fixed on a closed subset X < M and by Dia (M, X)
the identity path component of ZS(M , X). If X is empty, we will just omit
it from notation.

The aim of this section is to find precise relations between the groups
D(N) and D(M), see Lemma 4.2 below.

Lemma 4.1. Let Y < N be a path connected subset. Then its preimage
X = p~X(Y) is either path connected or consists of two disjoint path com-
ponents which are interchanged by &.

Proof. One easily deduces from path lifting axiom for the covering map
p: M — N, that p(X) =Y for every path component X’ of X. Hence for
every point y € Y its inverse image p~—!(y) intersects each path component
of X. But p~!(y) consists of two points, say = and &(z), whence X must
consist of either one or two path components. Moreover, if X has two path
components X’ and X” such that x € X’ and {(z) € X", then & interchanges
x and £(z) as well as path components X’ and X”. O

Lemma 4.2. Each q € D(M) yields a diffeomorphism h € D(N) such that
poq = hop, and the correspondence q — h is a continuous epimorphism
p: D(M) — D(N) with kernel ker(p) = {idys, €} = Zy. Moreover, p yields
an isomorphism 0f25+(M) onto D(N), so we get the following commutative
diagram whose rows are exact and all vertical arrows are isomorphisms:

Z2 C 1 (iaidl\/f) Z2 % ﬁ-"_(M) (ivq) —q ﬁ—"_(M)
At
> | gt Zl(i,q)HﬁiOq s: |p (4.1)
N 187
G D(M) ’ D(N)

where s s the inverse to p.
Moreover, s also induces the isomorphisms described below.

(1) For every subset Y < N we have an isomorphism

s: Du(N,Y) =~ Dy(M,p ' (Y)). (4.2)
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(2) Suppose Y < N is a subset such that for every path component Y’ of
Y and g € DT (M) the restrictions

Q‘pfl(Y’)a g‘pfl(Y’): pil(Y/) - M
are distinct maps, that is they take distinct values at some point. Then
we also have an isomorphism

s: D(N,Y) =~ D(M,p ' (Y)). (4.3)

For instance, this hold if Y is an m-dimensional submanifold or a two-
sided (m — 1)-dimensional submanifold, but does not hold e.g. when Y
is a finite subset.

Proof. Let ¢ € D(M) and h = p(q) € D(N). Then p~'(h) consists of two
diffeomorphisms q and £ o ¢ one of which preserves orientation, and another
one reverses it. Denote by s(h) those one which preserves orientation. Then
the correspondence h — s(h) is a continuous homomorphism

s:D(N) — DT (M)
satisfying p o s = idp(n). Since by definition  commutes with all 15(M )
and generates the kernel of p, we get the desired diagram (4.1).

(1) First notice that Diq(M) is also the identity path component of

D+(M). Hence p induces an isomorphism of Diq(M) onto the path com-
ponent Diy(N) of D(N), whence we get the inverse isomorphism

~

S: Did(N) = Did(M)
coinciding with (4.2) for the case Y = @.

Suppose now that Y < N is a non-empty subset and let X = p~1(Y).
Evidently, p(D(M, X)) < D(N,Y), that is if h € D(M) is fixed on X, then
p(q) is fixed on Y. Hence

p(Dia(M, X)) = Dia(N,Y).

Conversely, let h € Dig(N,Y), so there is an isotopy H : N x [0,1] > N
such that Hy = idy, H1 = h, and each H; is fixed on Y. Since p is a
covering map, H lifts to a unique isotopy H : M x [0,1] — M such that
Hy = idy and p(H;) = Hy. In particular, H; € Dig(M) < DY(M), and so
Ht = S(Ht). N

It remains to show that each H; is fixed on X, which will imply that

s(Dua(N,Y)) © Dia(M, X)

and give the isomorphism (1). Let z € X and y = p(z) € Y. Since
H(x x [0,1]) =y, it follows that

H(z x [0,1]) = p~(y) = {=, ()},
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But the latter set is discrete and H (z,0) = 2, whence H(z x [0,1]) = = as
well. Thus H; is fixed on X.

(2) Let X = p~1(Y), so the restriction p : X — Y is a double covering
map. As noted above p(D(M, X)) < D(N,Y), and so we should only check
that

s(D(N,Y)) ¢ D(M, X). (4.4)

a) Suppose that the set Y is path connected. Let also h € D(N,Y) and
q = s(h) € DY(M). To prove (4.4) we should check that ¢ is fixed on X.

Since h is fixed on Y, it follows that ¢(x) € {z,&(z)} for all x € X. By
assumption h|x = £|x, so there exists a point x € X such that ¢(z) = £{(z),
whence ¢(x) = x.

Let X’ be the path component of X containing xz. Then ¢(X') = X’
and the restriction ¢|x/ : X’ — X’ is a unique lifting of the identity map
idy : Y - Y for the covering map p|x : X — Y having the property that
q(z) = x. Hence q|x is the identity, i.e. q is fixed on X’.

Furthermore, suppose there exists another path component X” of X.
Then by Lemma 4.1 £(X’) = X” and £(z) € X”. Since ¢(X') = X',
it follows that ¢(X”) = X” and therefore ¢({(z)) = &(x). Hence g has
a fixed point in X”, and so it is fixed on X” as well. In other words
s(h) = q € D(M,X), which proves (4.4) for the case when Y is path
connected.

b) Now suppose Y is not path connected, and let {Y;};ep the collection
of all path components of Y, so Y = 'UAY;' Then by a)
1€

s(D(N,Y;)) = D(M,p~'(Y;)), i€l
Hence

s(D(N,Y)) =s(D(N, u Y;)) =s(n D(N,Y;)) = n s(D(M,Y;)) =

ieA ieA ieA
= 0 D(M.p~'(¥;)) =DM, y p~'(Yi)) = DM,p~ (V).
Lemma is proved. O
Lemma 4.3. Let f: N — P be a C* map, g= fop: M — P,
S(f)={heDN) | foh=f}, Slg)=1{aeD(N)|goq=g}

The following statements hold true.
(a) p(S(9)) = S(f) and p~1(S(f)) = S(9):
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(b) Suppose dim N = 2, f e F(N,P), and let Y be an f-adopted sub-

manifold. Then s induces an isomorphism

s:S(£,Y) =8(g,p7 (V). (4.5)
Proof. Let g € D(M) and h = p(q) € D(N), so
qo&==¢Eogq, pog=hop, g=fop. (4.6)

We have to show that h € S(f) if and only if g € g(g), i.e. we need to
deduce from (4.6) an equivalence of the following relations:

foh=T, goq=g.
Let x € M and y = p(z). If goq(x) = g(z), then

foh(y)=fohoply) = fopoq(x)=goq(r)=g(x) = fop(x)=f(y).
Conversely, if f o h(y) = f(y), then

gogq(x)=fopogq(r)=fohop(x)=fop(x)=g(x).

(b) Denote X = p~1(Y). Since X is a g-adopted submanifold, one easily
checks that S(g, X) € DY(M). Hence by (a) and Lemma 4.2 p injectively
maps S(g, X) into S(f,Y).

Conversely, it follows from (a) that s(S(f)) © S(g). Therefore we get
from statement (2) of Lemma 4.2 that

s(S(£,Y)) = s(S(f) n D(N,Y)) = 8(f) n D(M, X) = S(f, X).

Since p o s = idp+(py), it follows that s isomorphically maps S(f,Y) onto
S(f, X). O

5. HAMILTONIAN LIKE FLOWS FOR g € F(M, P).
Let M be an orientable compact surface.

Definition 5.1. Let g € F(M, P) and X be the set of critical points of g.
A smooth vector field F' on M will be called Hamiltonian like for g if the
following conditions hold true.
(a) F(z) =0 if and only if z is a critical point of g.
(b) F(g) = 0 everywhere on M, that is g is constant along orbits of F'.
(c) Let z be a critical point of g. Then there exists a local representation
of g at z as a homogeneous polynomial v : (R?,0) — (R,0) without
multiple factors (as in Definition 1.1) such that in the same coordinates
(2,y) near the origin 0 in R* we have that F' = —u;, % + vl a%'
It follows from (a) and Definition 1.1 that every orbit of F' is of one of
the following types:
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e a critical point of g;

e a regular component of some level set of g, and so it is a closed orbit
of F;

e aconnected component of the sets K\¥r, where K runs over all critical
components of level-sets of g.

By [11, Lemma 5.1] or [13, Lemma 16| for every g € F(M, P) there exists
a Hamiltonian like vector field. For the proof take the Hamiltonian vec-
tor field F for g with respect to any symplectic form w on M, and then
properly change F' near each critical point of ¢g in accordance with (c) of
Definition 5.1.

Let F' be a Hamiltonian like vector field for g. Since g takes constant
values on boundary components of M, it follows that F' is tangent to 0 M
and therefore it generates a flow F : M x R — M which will also be called
Hamiltonian like for g.

For each smooth function o : M — R let F, : M — M be the map
defined by

F.(z) = F(z, a(x)), x e M. (5.1)

We will call F,, the shift along orbits of F via the function «. In turn, «
will be called a shift function for F.

Evidently, condition (b) of Definition 5.1 is equivalent to the assumption
that

goFi=yg
for all t € R, that is F; € S(g).

More generally, since F,, leaves invariant each orbit of F, we see that
goF, = g for every function a € C*(M,R). In particular, F, is a diffeo-
morphism if and only if Fy, € S(g). Moreover, in this case F, € Siq(g) and
{Fta}e[o,1) is an isotopy between idy; and Fi,.

Denote by F(«) the Lie derivative of a with respect to F' and let

O(F) = {a e C*(M,R) | 1 + F(a) > —0}. (5.2)

Theorem 5.2. [11, Theorem 1.3|, [13, Theorem 3|. Let g € F(M, P),
F: MxR — M be the flow generated by some Hamiltonian vector field
F, and pp : O(F) — Sia(g) be the map defined by pp(a) = F,. If g has
at least one saddle or a degenerate local extreme, then @p is a homeomorphism
with respect to C* topologies and Siq(g) is contractible (because O(F) is
convez).

Otherwise, there exists 0 € O(F) such that or can be represented as a
composition

uotient homeomorphism
pr - O(F) == O(F)/{nf}nez ——— Sulg)
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of the quotient map by the closed discrete subgroup Z = {nf}nez of O(F) and
a homeomorphism of the quotient of ©(F') by Z onto Siq(g). In particular,
wF is an infinite cyclic covering map and Siq(g) is homotopy equivalent to
the circle.

6. GrRouUPSs A(f)

For f e F(N,P) let A(f) be the normal subgroup of S(f) consisting of
diffeomorphisms h of N having the following two properties:
1) h leaves invariant every connected component of each level-set of f;
2) if z is a degenerate local extreme of f, so, in particular, h(z) = z, then
the tangent map T, h : T,N — T, N is the identity.
For a closed subset Y of IV define the following three groups:
D(N,Y)={heD(N) | his fixed on Y},
Dub(N,Y) ={h e D(N) | h is fixed on some neighborhood of Y},
Dia(N,Y) ={h e D(N,Y) | h is isotopic to idy rel. Y}.
Define also their intersections with A(f) and S(f) as follows:
A(f,Y) = A(f) n D(N,Y), S(f,Y)=8(f) nDIN,Y),
nb(f Y) A( ) N Dllb(N7 Y)7 Sn ( ) S(f) N Dnb(Na Y)7 (6 1)
A/(fa ) ( ) mDid(N,Y)7 S/(fa ) S(f) ﬁDid(N, Y)7 ‘
nb(f’ ) = (f) mDnb(N7Y)7 (f7 ) =S

where we follow the convention that Y is omitted if it is empty. For example,
A'(f) = A(f) n Dyg(M). The following lemma can be proved similarly to
[10, Lemma 3.4| and we leave its proof for the reader.

(f) N Dnb(Nv Y)v

Lemma 6.1. cf. [10, Lemma 3.4]. All the groups in (6.1) are normal
subgroups of S(f,Y).

The groups A'(f,Y), A(f,Y), S'(f,Y) are unions of path components
of S(f,Y). In particular, Siq(f,Y) is the identity path component of each
of these groups.

Similarly, the groups AL, (f,Y), A (f,Y), and S/ (f,Y") are also unions
of path components of Syn(f,Y). O

It follows that moA(f,Y) can be regarded as a normal subgroup of
moS(f,Y). Moreover, if f has no degenerate local extremes, then the cor-
responding quotient

B S(f’ N 7"'O‘S(fvyv)
GUhY) = A(f,Y Si f, / Sa(7Y) ~ mA (V)
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can be interpreted as the group of automorphisms of the Kronrod-Reeb
graph of f induced by diffeomorphisms from S(f,Y), see e.g. [5], [19], [1],
[13]. If f has degenerate local extremes, then there is a similar interpreta-
tion of G(f,Y) but one should modify Kronrod-Reeb graph of f by gluing
additional edges to each vertex corresponding to each degenerate local ex-
treme, see for details [13]|. Similarly, one can define

’ . 7TOS/(fv Y) . 7708111)(]0) Y)
G (f7 Y) N 71'OA,(f7 Y) ’ an('ﬂ Y) B 71'OAnb(fy Y) ’
TS’ Y
(o(£.7) = Tl )

Tl (fY)

Our aim is to prove the following statement extending [10, Corollary 7.2]
to non-orientable case and deduce from it several useful results.

Theorem 6.2. cf. [11, Corollary 6.1], [10, Corollary 7.2]. Let N be a
compact surface, f € F(N,P),Y < N be a compact f-adopted submanifold,
and Uy be an f-reqular neighborhood of Y. Then the following inclusions
are homotopy equivalences:

S(f,Uy) = Sw(f,Y) < S(f,Y), (6.2)
S'(f,Uy) = Siy(fY) = S(£.Y), (6.3)
A(f,Uy) = Aw(fY) < A(f,Y), (6.4)
AN(fUy) = A(£Y) < A(f,Y). (6.5)

Proof. The case when N is orientable is proved in [10]. So our aim is to
extend it to the case when N is non-orientable. In fact the proof is an
adaptation of [10, Lemma 7.1] similar to [11, Lemma 4.14] and therefore
we only indicate the principal arguments.

Also notice that similarly to [10, Corollary 7.2] it suffices to prove that
the inclusions (6.2) are homotopy equivalences, so they induce bijections
between the path components of the corresponding groups, and the inclu-
sions of the corresponding path components are homotopy equivalences.

Indeed, notice that the groups in (6.3) are intersections of the correspon-
ding groups from (6.2) with the path component D;q(N) of the larger group
D(N). If a path component K of any group in (6.3) intersects Djq(NV), then
K is contained in Djq(N). Hence the inclusions (6.3) yield bijections be-
tween the path components of the corresponding groups, and due to (6.2)
the inclusions of path components are homotopy equivalences.

The deduction that (6.4) and (6.5) are homotopy equivalences is similar.

Thus assume that N is a non-orientable connected compact surface. Con-
sider its oriented double covering p: M — N, and let £: M — M be the
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corresponding C* diffeomorphism without fixed points generating the group
Zs of covering transformations, that is €2 =idy; and po & = p.

Denote g = fop: M — P, X = p~}(Y), and Ux = p~'(Uy). Then
ge F(M,P),Y c N is a compact g-adopted submanifold of M, and Ux
is a g-regular neighborhood of X.

Fix a Hamiltonian like vector field F for gon M and let F: M xR — M
be the flow generated by F.

Let &*F =T¢ YoFo&: M — TM be the vector field on M induced by
¢ from F'. Then one can always assume, see [11, Lemma 5.1 (2)], that F is
also skew-symmetric with respect to € in the sense that {*F = —F', whence

oF; =F_;0¢ (6.6)

for all + € R. Indeed, it is enough to replace F with 1(F + ¢*F) and
properly change it near critical points of f in order to preserve property (c)
of Definition 5.1.

Lemma 6.2.1. cf. [11, Lemma 4.14], [10, Lemma 7.1]. Let A < S(g) be a
subset and v: A — C*(X,R) be a continuous map such that

q(x) = F(z,7(q)(x)) (6.7)
for all ¢ € A and x € X. Then for any pair U < V of g-reqular
neighborhoods of X such that U < IntV, there exists a continuous map
B: A— O(F) c C*(M,R), see (5.2), satisfying the following conditions.

(1) For each q € A the function ((q) extends v(q) to all M, satisfies

relation (6.7) on U, and vanishes on M\V, that is
 8(q) =(q) on X,
e 4(z) = F(z, B()()) for all z e U,
e B(q) =0 on M\V.

(2) If v(¢) = 0 and q is fized on some g-regular neighborhood U < U,
then 8(q) =0 on U’ as well.

(3) The homotopy H: A x I — S(g) defined by
H<q7 t) = (Ftb’(q))_l ©q
has the following properties:

(a) Hy = idgq and H1(A) < S(g,U), so it deforms A in S(g) into
S(9,U);

(b) if v(q) = 0 and q is fized on some g-reqular neighborhood U' < U,
then Hy(q) is fixzed on U’ for all t € [0,1] as well.

Suppose in addition that F is skew-symmetric, that is &*F = —F, and
either of the following conditions hold:
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(i) every connected component of X contains a critical point of g being
not a non-degenerate local extreme;

(i) v(q) =0 for all ge A~ S(g).
Then one can assume that

(4) B(q) o & = —B(q) for each ge An S(g):

(5) H((A n S(g)) x I) c S(g), that is the set of &-symmetric diffeo-
morphisms remains invartant with respect to the homotopy H.

Proof. Statements (1)-(3) constitute [10, Lemma 7.1]. So we should verify
statements (4) and (5) concerning skew-symmetric diffeomorphisms.

Let us briefly recall the idea of proof. Since Ux is a g-regular neigh-
borhood of X, for each ¢ € A the function 7(¢): X — R uniquely ex-
tends to a C* function J(¢): V' — R such that (6.7) holds on V, that is
q(x) = F(x,75(q)(x)) for all z € V. Moreover, the correspondence ¢ — (q)
is a continuous map v: A — C*(V,R).

Fix a C* function p: M — [0, 1] with the following properties:

e 1 = 0 on some neighborhood of M\V;
e 4 =1 on some neighborhood of U;
e F(u) =0, that is u take constant values along orbits of F'.

Then the required map f: A — C*(M,R) can be defined by

@) - p(z), forx eV,
6((])(1') - {0’ for 1z M\V (6.8)

Suppose now that F' is skew-symmetric with respect to £&. We will show
below that in this case

~(9) o€ =), (6.9)

for all g€ A n S(g).

Assuming that (6.9) holds let us complete the proof of Lemma 6.2.1.
Since U and V are invariant with respect to £, and £ maps orbits of F' onto
orbits, one can replace the function p with %(,u + po &) not violating the
above conditions on p and thus additionally assume that

ok =p. (6.10)

Now if we define 5 by the same formula (6.8) then conditions (4) and (5)
will hold true.

(4)If ge An S(g) and z € V, then

(6.9),(6.10)
7

B(q) o &(x) =F(q) 0 &(x) - po&(x)
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On the other hand, if z € M\V, then £(x) € M\V as well, and so
B(q)(x) = B(q) o &(z) = 0.

(5) Notice that for each g € A n S(g) and ¢ € [0,1] we have that

(6.6) 1)
Fi5(9) © () = Fig(g)oe(a) (§(7)) == £ 0 F_i5(g)0¢(2)(T) ==

=& o Fip()()(x) = § 0 Fygg ().

This means that the map F,g(,) belongs to g’(g), whence

H(Q? t) = (Ftﬁ(q))_l cqe g(g)
as well.

Thus it remains to prove (6.9). Let ¢ € A n S(g), so

qo&=¢&oyq, q(z) = F(z,5(q)(z))
for all x € V. Then

- (6:6)
qo&(x) =F(&(x),7(q) o f(fﬂ)) F5(g)ot(z) ©&(2) == § o F _5(g)og(a) (T)-
£oq(r) = £ F(2,7(q)(x)) = € 0 Fy(g)()(2)-
Hence
F_5(q)oe() (2) = Fy(g)(a) () = a(2)
for all z € V. In other words, —75(q) o £ and 7(q) are shift functions for ¢
on V.

(i) Suppose that each connected component Y of X contains either a
degenerate local extreme or a saddle critical point of g. Then the shift map
on Vy is injective, i.e. any two shift functions for ¢ on V4 must coincide.
Hence —7(q) o € and 7(q) coincide on all of V.

(ii) If v(¢) = 0 on all of X, then v(¢) = —v(¢) c& = 0 on X as well since
&(X) = X. Moreover, as V is a g-regular neighborhood of X, X inter-
sects interiors of all connected components of V. It then follows from [10,
Lemma 6.1(ii)] that —5(q) o £ and J(g) coincide on all of V. Lemma 6.2.1
is completed. O

Now we can prove that the inclusions (6.2) are homotopy equivalences.
Due to Lemma 4.3(b) we can identify groups in (6.2) with their “symmet-
ric” variants, and so it suffices to show that the following inclusions are
homotopy equivalences:

g(gaUX) - §nb(g>X) < §(97X)' (6'11)
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Let V be an arbitrary g-regular neighborhood of Uy, A = g(g, X), and
v: A — CP(X,R) be a constant map into the zero function. Then for each
x € X and q € A we have that

F(z,7(q)(z)) = F(x,0) = z = q(x).
Hence by Lemma 6.2.1(5) there exists a homotopy H : A x I — S(g) such
that
o Hy=idy and Hy(A) < S(g,V);
o if ¢ € A is fixed on some g-regular neighborhood of X contained in
Ux, then so is Hy(q) for all t € [0, 1];
In other words, H is a deformation of A = g(g,X) into g(g,V) which

leaves invariant S(g, Ux) and Sy, (g, X). Hence the inclusions (6.11) and
therefore (6.2) are homotopy equivalences. O

Simplification of diffeomorphisms preserving a function via iso-
topies. Let N be a non-orientable compact connected surface, p: M — N
be the orientable double covering, and £ : M — M be an involution with-
out fixed points generating the group Zo of covering transformations. Let
also f e F(N,P) and g = fope F(M,P). Since M is orientable, one can
construct a skew-symmetric Hamiltonian like flow F on M for g.
Let Y < N be a connected f-adopted subsurface and W < N be an
f-adopted submanifold. Denote X = p~*(Y) and V = p~}{(W).
Let also S(g,V; X) the subset of S(g, V') consisting of diffeomorphisms
¢ admitting a C* function oy : X — R with the following properties:
(1) q(z) = F(z, aq(z)) for all z € X;
(2) ag=0o0on X nV.
Denote
S(g.V; X) = 8(9,V; X) nD(M).
Evidently, we have the following inclusion:
S(g,VuX) = 8(g,V;X), (6.12)

since for each g € §(g, V' U X) one can set a; =0 on X.
Using isomorphism s from (4.5) put

S(W:Y) =51 (8(g,V: X)), A(f,W;Y) = A(f) n S(f,W;Y).
Then we obviously have the following inclusions:

A(fLWUY)C A(L,W;Y),  S(FEWUY)cS(fW;Y)  (6.13)

Corollary 6.3. cf. [10, Corollary 7.3|. Let N be a compact surface (ori-
entable or not), f € F(N,P), W be an f-adapted submanifold, andY be a
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connected f-adapted subsurface containing at least one saddle critical point
of f. Then the inclusions (6.13) are homotopy equivalences.

Proof. Since A(f) consists of path components of S(f), it suffices to show
only that the second inclusion is a homotopy equivalence.

For orientable N this statement coincides with [10, Corollary 7.3]. Let us
briefly recall the main steps of its proof. Since Y is connected and contains
saddle critical points of f, one can show that for every h € S(f, W;Y) the
function «y, is unique and the correspondence h — «y, is a continuous map
v:S(f,W;Y) — C*(Y,R). Then existence of a deformation of S(f, W;Y)
into S(f,W uY) is guaranteed by [10, Lemma 7.1] which is the same as
Lemma 6.2.1.

Suppose N is non-orientable. Let p : M — N be the orientable double
covering, and £ : M — M be an involution without fixed points generating
the group Zs of covering transformations, ¢ = fop € F(M,P), and F
be a skew-symmetric Hamiltonian like vector field for ¢ on M. Denote
X =p YY) and V = p~1(W). Then, by the orientable case, the inclusion
S(g,V u X) < S(9,V;X) is a homotopy equivalence. Moreover, by (i)
and (ii) of Lemma 6.2.1 the deformation of S(g,V;X) to S(g,V u X)
preserves £-symmetric diffeomorphisms, which implies that the inclusion
g(g, VulX)c g(g, V; X) is a homotopy equivalence as well.

Finally, we have isomorphisms of topological groups (4.5):

~ ~

s:S(fLWuY)—>S(g,VuX), s:S(f,W;Y) — S(g,V; X),

whence the inclusion S(f, W oY) < S(f,W;Y) is a homotopy equivalence
as well. (]

7. FUNCTIONS ON ANNULUS

Lemma 7.1. Let A = S' x [0,1] and f € F(A,P). Then we have the
following commutative diagram

J

moA(f, 0A) moS(f,04) G(f,04)

;l glzp ;l (7.1)

Z x oA (f,04) 0o 7w mS/(f,04) —= G'(f,04)

in which j is induced by the inclusion A(f,0A) < S(f,0A), the rows are
exact, and vertical arrows are isomorphisms.

Proof. Let U be an f-regular neighborhood of dA. Then one can construct
a Dehn twist 7 : A — A along S' x 0 supported in U and preserving f,
that is 7 € S(f, 0A), see e.g. [11, §6].
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It is well known that the mapping class group moD(A, 0A) is freely gen-
erated by the isotopy class of 7, so we have the following sequence of ho-
momorphisms

D(A,0A) =

a: D(A,0A) Du(A.04) = moD(A,0A) —— Z,

where the first arrow is a natural homomorphism into the mapping class
group of A rel. 0A associating to each h € D(A,dA) its isotopy class, and
the last arrow is an isomorphism. One can also assume that ¢(7) = 1.
Hence the restriction of o to S(f, 0A):

B =alsien  S(f,0A) > Z

is surjective. Moreover,
ker(B) = S(f,0A) nker(a) = S(f,0A) N Dig(A, 0A) =: S'(f,0A).

Hence we have the following short exact sequence:

S'(f,04) — S(f,04) <2 7, (7.2)

and 8 admits a right inverse o : Z — S(f, 0A) defined by o(k) = 7%, i.e.
B oo =idyg.

Due to (6.2) there is an isomorphism induced by the natural inclusion:
71-OSI(f? U) = 71-08/(.](.7 aA)a

whence (7.2) reduces to the following exact sequence:

108 (f,U) — mS(f,04) 2> 2,

in which 3 admits a right inverse 6 : Z — mS(f, 0A) given by (k) = [7]*,
kelZ.

As 7 is supported in U, we see that 7 commutes with each h € S'(f,U).
Therefore the subgroups mS'(f,U) and {[7]) =~ Z mutually commute and
generate all the group myS(f,0A). Hence an isomorphism (7.1) can be
defined by

Y([h]) = (B(h), [horPM)),

for h e S(f, 0A).

Regarding moA(f,0A) as a subgroup of myS(f,0A), one easily checks
that ¢ maps moA(f, 0A) onto Z x moS’(f, 0A), whence left and right vertical
arrows in (7.1) are isomorphisms. O
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8. PROOF OF THEOREM 1.5

By Theorem 1.4 there exists a unique a critical component K of some
level-set of f such that if W is an f-regular neighborhood of K, and
Yo, Y1,...,Y, are all the connected components of B\W enumerated so
that 0B < Yy, then Yj is an annulus S* x [0,1], each Yy, k =1,...,n, is a
2-disk, see Figure 8.1.

FIGURE 8.1.

There is also a natural action of S(f,0B) on Y = {Y1,...,Y,} x {+1}.

Proof that S(f,0B)/Qy freely acts on Y. Let us paste 0B with a 2-disk
and denote the obtained surface (being therefore a projective plane) with B.
Let also ﬁ-, 1=20,1,...,n, be the connected component of ﬁ\K containing
Y;. Then we have a CW-partition = of B whose 0-cells are critical points
of f belonging to K, 1-cells are connected components of the complement
K\Xy, and 2-cells are {Yl}zzon
Notice that each h € S(f,0B) extends to a unique homeomorphism h
of B fixed on B\B. Moreover, since h(K) = K, it also follows that h is
=Z-cellular, i.e. it induces a permutation of cells of =.
Suppose h(e) = e for some cell e of Z. If either
e dime =0 or
e dime =1,2 and h preserves its orientation
then we will say that e is ht-invariant. In particular, h has a h'-invariant
cell Yo.
Since h is also isotopic to id 4, its Lefschetz number L(h) = x(B) = 1.
Then it follows from [12, Corollary 5.6] that

(a) either the number of At-invariant cells of = is x(B) = 1, or
(b) all cells of = are h™-invariant.
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Suppose h(Y;,+) = (Y;,+) for some i € {1,...,n}. Then Y; is ht-
invariant, and so h has at least two h+—1nvar1ant cells: Yy and Y;. As
2 > 1 = L(h), we obtain from (b) that all cells of Z are h*-invariant, which
implies that h(Yj,+) = (Yj,+) for all other j € {1,...,n}. This means that
the action of S(f,0B)/Qf on Y is free.

It remains to construct at isomorphism (1.3)
n

mQr = Z x | [ Pr(Vi
i=0

For the proof we need the following two lemmas.

Lemma 8.1. Qf = S(f,0B;W).

Proof. Let h e S(f,0B; W). Then Corollary 6.3 implies that h is isotopic
in S(f,0B; W) to some diffeomorphism b’ € S(f,0B u W). Hence h and
R act on Y in the same way. But /' is fixed on W, and so on dY; for all
1 =1,...,k. Whence h' leaves invariant each Y; and preserves its orienta-
tion, that is i’ € Q. Therefore so does h, and thus h € Q5 as well, i.e.
S(f,0B; W) c Qy.

Conversely, let h € Qf, p: A — B be the oriented double covering of B,
and g = s(h) € S(g, ?A) be a unique lifting of h fixed on dA. Then for each
i=1,...,n the preimage p~!(Y;) consists of two connected components X/
and X/, see Figure 8.1. The assumptions that h(Y;) = Y; and h preserves
orientation of ¥; mean that ¢ leaves invariant both X/ and X and preserves
their orientations. Hence by [10, Lemma 7.4], ¢ has a unique shift function
ag : p Y (W) — R. In other words, ¢ € S(g, 0A; p~1(W)), whence by
definition h = s71(q) = p(q) € S(f,0B; W). O

Lemma 8.2. There exists a commutative diagram

J

ToA(f,0B; W) ¢ moS(f,0B; W)

|2 =

n id i0X - X n, n
Z x T md(fly,, 0Y;) 20 Zox [ moS (fly,, 0Y5)
=0 1=0

. which j,jo,...,Jn are induced by natural inclusions and the vertical
arrows are isomorphisms. In particular, we get an isomorphism (1.3):

m0Qf = m0S(f,0B; W) = Z x | [moS' (fly;, 8Vi) = Z x [ [ P¢(V3)
=0 .
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Proof. As j is a monomorphism, it suffices to construct an isomorphism
1 inducing the left vertical arrow. Due to Theorem 6.2 and Corollary 6.3
the following inclusions are homotopy equivalences:

Sw(f,0BUW) < S(f,0BUW) < S(f,0B; W),

whence it is enough to compute the group moSu,(f, 0B u W). Notice that
there is a natural isomorphism

n
a:Su(f,0BUW) — [[Sw(flvi, Vi),  a(h) = (hlyy, ... hly,),
i=0
inducing an isomorphism of the corresponding my-groups:

n
TF()Snb(f, 0B u W) = HTF[)Snb(f’yi, aYZ)
i=0
Since Y is an annulus, we get from Lemma 7.1 that

708w (flyvo, 0Y0) = Z x moS)y(flve, 0Y0).

Moreover, Sy (fly;, 0Yi) = Sl (flyi, 0Y3), i =1,...,n, for all others 2-disks
Y;, whence we get the required isomorphism 1):

¥ moSun(flyi, 0Yi) = moSu (flvi, 0Y3) = moS'(fly;, Y5).
It remains to note that 1) maps moA(f, 0B; W) (regarded a subgroup of
moS(f,0B; W)) onto Z x ﬁ 7' (fly;, Y;). We leave the details to the
reader. = (]

Theorem 1.5 is completed.
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