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Homotopy properties of smooth
functions on the Möbius band

Iryna Kuznietsova, Sergiy Maksymenko

Abstract. Let B be a Möbius band and f : B Ñ R be a Morse map taking
a constant value on BB, and S(f, BB) be the group of diffeomorphisms h of
B fixed on BB and preserving f in the sense that f ˝ h = f . Under certain
assumptions on f we compute the group π0S(f, BB) of isotopy classes of
such diffeomorphisms.
In fact, those computations hold for functions f : B Ñ R whose germs at

critical points are smoothly equivalent to homogeneous polynomials R2 Ñ R
without multiple factors.
Together with previous results of the second author this allows to compute

similar groups for certain classes of smooth functions f : N Ñ R on non-
orientable compact surfaces N .

Анотація. Нехай B – стрічка Мебіуса і f : B Ñ R – функція Морса, яка
приймає постійне значення на межі BB. Позначимо через S(f, BB) групу
дифеоморфізмів h поверхні B нерухомих на межі BB і зберігаючих f у
тому сенсі, що f ˝ h = f . В роботі показано, що функція f завжди має
єдину критичну компоненту зв’язності K деякої множини рівня, таку,
що K є інваріантною відносно S(f, BB), а доповнення BzNK до деякого
відкритого околу NK компоненти K є об’єднанням замкнених 2-дисків
X1, . . . , Xn та одного циліндра, що містить BB.
Більш того, за умови, що S(f, BB) залишає інваріантним також кожен

диск Xi, обчислено групу π0S(f, BB) класів ізотопії дифеоморфізмів з
S(f, BB). Показано, що

π0S(f, BB) – Z ˆ

n
ź

i=1

π0S(f |Xi , BXi),

де S(f |Xi , BXi) – аналогічні групи для обмеження f на Xi.
Насправді це твердження встановлене для набагато ширшої ніж функ-

ції Морса множини функцій f : B Ñ R, які гладко еквівалентні однорід-
ним многочленам без кратних множників в околі кожної своєї критичної
точки.
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Разом з попередніми результатами другого автора цей результат доз-
воляє обчислити аналогічні групи π0S(f, BN) для деяких класів функцій
f : N Ñ R на довільних компактних неорієнтовних поверхнях N .

1. MAIN RESULT
LetM be a smooth compact surface, i.e. a 2-dimensional manifold, which

can be disconnected, non-orientable, and have a non-empty boundary, and
P be either a real line R or a circle S1. Then the group D(M) of C8-
diffeomorphisms of M acts from the right on the space of smooth maps
C8(M,P ) defined by the following rule: the result of the action of a diffeo-
morphism h P D(M) on f P C8(M,P ) is the composition f ˝ h. Then for
each f P C8(M,P ) one can define the stabilizer of f

S(f) = th P D(M) | f ˝ h = fu

and its orbit
O(f) = tf ˝ h | h P D(M)u

with respect to the above action.
More generally, denote by D(M,X) the group of diffeomorphisms of M

fixed on a closed subset X Ă M . Let also
S(f,X) = S(f) X D(M,X) and O(f,X) = tf ˝ h | h P D(M,X)u.

We will endow D(M,X) and C8(M,P ) with Whitney C8-topologies and
their subspaces S(f,X) and O(f,X) with induced ones. Then they yield
certain topologies on the stabilizers and orbits of maps f P C8(M,P ). Let
also Did(M,X) and Sid(f,X) be the identity path components of D(M,X)
and S(f,X), and Of (f,X) be the path component of O(f,X) containing
f . If X = ∅, then we will omit X from notation.
In the present paper we continue study of the homotopy types of S(f,X)

and O(f,X), see below for references and the history of the problem. Our
main results, Theorems 1.4 and 1.5, concern with the group π0S(f,X) for
the case when M is a Möbius band, X = BM , and f : M Ñ P belongs to
the following space of maps F(M,P ).
Definition 1.1. Let F(M,P ) be the subset of C8(M,P ) consisting of
maps f :M Ñ P having the following properties:

(1) the map f takes constant values at each connected component of
BM and has no critical points on it;

(2) for every critical point z of f the germ of f at z is C8 equivalent to
some homogeneous polynomial v : R2 Ñ R without multiple factors.
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A map f P C8(M,P ) will be calledMorse, if it satisfies condition (1) and
all its critical points are non-degenerate. Denote byM(M,P ) the space of
all Morse maps. A Morse map f is generic, if it takes distinct values at
distinct critical points.
Since the polynomial ˘x2 ˘ y2 is homogeneous and has no multiple fac-

tors, it follows from Morse lemma that
M(M,P ) Ă F(M,P ).

Also notice that every f P F(M,P ) has only isolated critical points. A
structure of level set foliations near critical points of f P F(M,P ) is illus-
trated in Figure 1.1. A critical point of f P F(M,P ) which is not a local
extreme will be called a saddle.

local extreme saddles

FIGURE 1.1. Topological structure of level-sets of maps from
F(M,P ) near critical points

Let f P F(M,P ), c P R, and K be a connected component of the level-
set f´1(c). Then K will be called regular whenever it contains no critical
points, and critical otherwise. A connected component U of f´1[c´ε, c+ε]
containing K will be called an f -regular neighborhood of K if UzK contains
no critical points and does not intersect BM .
Let U = U1 \ U2 \ ¨ ¨ ¨ \ Uk be a disjoint union of connected one- and

two-dimensional submanifolds of M . We will say that U is an f -adopted
submanifold if for each i = 1, . . . , k the following conditions hold:

(1) if dimUi = 1, then Ui is a regular connected component of some
level-set f´1(c), c P R;

(2) if dimUi = 2, then the connected components of the boundary BUi
are regular connected component of some level-sets of f .

In particular, an f -regular neighborhood is an f -adopted subsurface. Evi-
dently, if U is an adopted subsurface, then the restriction f |U belongs to
the space F(U,P ).
Denote

S 1(f,X) = S(f) X Did(M,X).

The following statement collects known information about the homotopy
types of stabilizers and orbits of f P F(M,P ).
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Theorem 1.2. Let M be a connected compact surface, f P F(M,P ), and
X be a union of finitely many connected components of some level-sets of
f and some critical points of f . Then the following statements hold.
(1) The map p : D(M,X) Ñ O(f,X) defined by p(h) = f ˝ h is a

locally trivial principal S(f,X)-fibration. In particular, the restriction map
p : Did(M,X) Ñ Of (f,X) is a locally trivial principal S 1(f,X)-fibration as
well, [20], [11].
(2) The group Sid(f,X) is homotopy equivalent to the circle if and only

if the following condition hold:
‚ M is orientable, χ(M) ě 0, X is a collection of at most χ(M) critical
points of f , and each critical point of f is a non-degenerate local extreme.

Otherwise, Sid(f,X) is contractible, and in this case
(a) ifM = S2, X = ∅, and f is Morse having exactly two critical points

(minimum and maximum), then Of (f) is homotopy equivalent to
S2;

(b) otherwise, if M = S2 or RP 2, and X = ∅, then πkOf (f) – πkS
3

for k ě 2;
(c) otherwise, πkOf (f,X) = 0 for k ě 2, [11], [13].
(3) Suppose Sid(f,X) is contractible. Then we have the following short

exact sequence1:

π1Did(M,X) ã
p

ÝÝÑ π1O(f,X) ÝÑÑ π0S 1(f,X). (1.1)

If χ(M) ă |X|, the group Did(M,X) is contractible as well, and (1.1) yields
an isomorphism

π1Of (f,X) – π0S 1(f,X),

see [11], [13].
(4) Of (f,X) = Of (f,X Y V ) for any union of boundary components V

of M , [14].
(5) If f is Morse and has exactly n critical points, then Of (f) is homo-

topy equivalent to a certain covering space of the n-th configuration space
of M , which in turn is homotopy equivalent to some (possibly non-compact)
(2n´ 1)-dimensional CW-complex. In particular, π1Of (f) is a subgroup of
the n-th braid group Bn(M) of M , [18].
(6) Suppose f is generic. If M = S2 and f has exactly two critical points

being local extremes, then Of (f) is homotopy equivalent to S2. Otherwise,
if M = S2 or RP 2, then Of (f) is homotopy equivalent to SO(3) ˆ (S1)k

1 Throughout the paper the arrow ãÑ means “monomorphism” and ÑÑ means “epimor-
phism”.



Homotopy properties of smooth functions on the Möbius band 5

for some k ě 0. In all other cases Of (f) is homotopy equivalent to (S1)k

for some k ě 0, [11].
(7) Suppose M is orientable, f P M(M,R), and χ(M) ă |Fix(S 1(f))|

(which holds e.g. if χ(M) ă 0 or if f is generic and has at least one
saddle critical point). Then Of (f) has the homotopy type of the quotient
(S1)k/G of (S1)k by a free action of some finite group G if M = S2, and
the homotopy type of ((S1)k/G)ˆSO(3) if M = S2, [6], [7], [8], and also [9]
for extensions to functions with prescribed local singularities of Aµ-types,
µ P N.
Results in (7) are obtained by E. Kudryavtseva.
Notice that in the case (c), e.g. when if M is distinct from 2-sphere

and projective plane, then Of (f) is aspherical, and so its homotopy type
is completely determined by the fundamental group π1Of (f).
If f is generic, then by (6) Of (f) is homotopy equivalent to some torus

(S1)k, whence π1Of (f) = Zk is free abelian.
Suppose M is orientable and differs from S2. Then by (7) we have

a certain free action of a finite group G on the torus (S1)k. Hence the
quotient map q : (S1)k Ñ (S1)k/G is a locally covering map, whence we
have the following short exact sequence:

π1(S
1)k ãÑ π1(S

1)k/G ÑÑ G,

which due to (7) can be rewritten as follows:

Zk ãÑ π1Of (f) ÑÑ G.

This sequence was first discovered in [11, Eq. (1.6)]. In particular, it implies
that π1Of (f) is a crystallographic group, i.e. contains a free abelian normal
subgroup of finite index. Moreover, due to (5) π1Of (f) is also a subgroup
of a certain braid group Bn(M) of M . Since Bn(M) has no elements of
finite order, so does π1Of (f), and therefore it is a Bieberbach group.
To describe further known results, for every f -adopted connected sub-

surface X Ă M let
Pf (X) := π1Of |X (f |X).

be the fundamental group of the orbit of the restriction of f to X. In
particular, if either BM is non-empty or χ(M) ă 0, then we get from
Theorem 1.2 the following isomorphisms:

Pf (M) := π1Of (f)
(4)
– π1Of (f, BM)

(3)
– π0S 1(f, BM). (1.2)

The following statement summarizes several results about Pf (M).
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Let G be a group and m ě 1. Then the group Z naturally acts on m-th
direct product Gm by cyclic shifts of coordinates, that is

k ¨ (a0, a1, . . . , am´1) = (an, an+1, . . . , an´1),

for all k P Z and ai P G, where all indices are taken modulo m.
Similarly, for m,n ě 1 the elements of the group Gmn can be regarded as

mˆnmatrices (ai,j)j=0,...,n´1
i=0,...,m´1 with entries in G. Hence one can define an ac-

tion of the group Z2 on Gmn defined by (k, l) ¨ (ai,j) = (ai+kmodm, j+lmodn),
that is (k, l) P Z2 makes k cyclic shiftts of rows and l cyclic shifts of columns
of the matrix (ai,j).
Evidently, both actions are non-effective. Let

G ≀
m
Z := Gm ¸ Z G ≀

m,n
Z2 := Gmn ¸ Z2

be the semidirect products corresponding to the above actions.
Thus G ≀

m
Z is a cartesian product of sets Gm ˆ Z with the following

operation:
(a0, . . . , am´1, k)(b0, . . . , bm´1, l) = (a0bk, a1bk+1, ¨ ¨ ¨ , ambk´1, k + l).

The multiplication in G ≀
m,n

Z2 is defined in a similar way.

Evidently, G ≀
1
Z = Gˆ Z, G ≀

1,1
Z2 = Gˆ Z2, and t1u ≀

m
Z = Z.

Theorem 1.3. [12], [15], [16], [17], [3], [4]. Let M be a compact surface.
Then for each f P F(M,P ) there exist mutually disjoint f -adopted subsur-
faces Y1, . . . , Yn Ă M each containing critical points of f and having the
following properties.
(1) If χ(M) ă 0, then each Yi is either a 2-disk or an annulus or a Möbius

band, and

Pf (M) –

n
ź

i=1

Pf (Yi).

(2) SupposeM is a 2-disk and f has a unique critical point z being therefore
a local extreme. If z is non-degenrate, then Pf (M) = t1u. Otherwise
Pf (M) = Z.

(3) If M is an annulus and f has no critical points, then Pf (M) = t1u.
(4) IfM is a 2-disk or an annulus and f has saddle critical points, then each

Yi is a 2-disk, and after a proper renumbering them with two indices
tYi,ju the group Pf (M) is isomorphic with one of the following groups:

a
ź

i=1

(( bi
ź

j=1

Pf (Yi,j)
)
≀
ki

Z
)
, Z ˆ

a
ź

i=1

(( bi
ź

j=1

Pf (Yi,j)
)
≀
ki

Z
)
,
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for some a, bi, ki, i = 1, . . . , a.
(5) Suppose M = T 2 is a 2-torus.

(a) If the Kronrod-Reeb graph Γf of f (see §2 for definition) is a tree,
then each Yi is a 2-disk, and

Pf (T 2) –
( n

ź

k=1

Pf (Yk)
)
≀
a,b

Z2.

for some a, b ě 1.
(b) Otherwise, Γf contains a unique cycle, n = 1, Y1 is an annulus,

and
Pf (T 2) – Pf (Y1) ≀

k
Z

for some k ě 1.
Notice that in this theorem Pf (M), Pf (Yi), Pf (Yi,j) can be replaced by

either of the groups of type (1.2). On the other hand, Pf (T 2) = π1Of (f)
is not the same as π0S 1(f) since π1D(T 2) – Z2 and due to (1.1) we have
the following short exact sequence: Z2 ãÑ π1Of (f) ÑÑ π0S 1(f).
Theorem 1.3 shows that for most surfaces (possibly except for 2-sphere,

projective plane and Klein bottle) computation of Pf (M) reduces to the
cases of 2-disk and Möbius band. Indeed, the cases (1) and (5) reduce
computation to 2-disks, annuli and Möbius bands. Furthermove, in the
case (4) each Yi,j contains less critical points than f , whence the group
Pf (Yi,j) has similar structure, and one can use induction on the number of
critical points of f with initial inductive step given by cases (3) and (4).
Our aim is to describe the structure of Pf (M) for the case when M is a

Möbius band and under certain restrictions on f P F(M,P ). The remained
open cases are 2-sphere and all non-orientable surfaces.

Theorem 1.4. Let B be a Möbius band and f P F(B,P ). There exists
a unique critical component K of some level-set of f with the following
properties: if W is an f -regular neighborhood of K and Y0, Y1, . . . , Yn are
all the connected components of BzW enumerated so that BB Ă Y0, then
Y0 is an annulus S1 ˆ [0, 1], and each Yk, k = 1, . . . , n, is a 2-disk. In
particular,

h(K) = K, h(Y0) = Y0, h
( n

Y
k=1

Yk
)
=

n
Y
k=1

Yk,

for each h P S(f).

Let Y = tY1, . . . , Ynu be the family of all connected components of BzW

being 2-disks as in Theorem 1.4. Since n
Y
k=1

Yk is invariant with respect to
S(f, BB), we have a natural action of S(f, BB) on Y by permutations.



8 Kuznietsova I., Maksymenko S.

Let us fix an orientation of each Yk, k = 1, . . . , n, and put Ŷ = Yˆt˘1u.
Then the action of S(f, BB) on Y extends to an action on Ŷ defined by
the following rule: if h P S(f, BB) and Yk P Y, then h(Yk,+1) = (h(Yk), δ)
and h(Yk,´1) = (h(Yk),´δ), where

δ =

#

+1, if the restriction h|Yk : Yk Ñ h(Yk) preserves orientation,
´1, otherwise.

Let Qf be the normal subgroup of S(f, BB) consisting of diffeomorphisms
preserving each Yk with its orientation. In other words, Qf is the kernel
of non-effectiveness of the action of S(f, BB) on Ŷ. Hence the action of
the quotient S(f, BB)/Qf on Ŷ is effective. However the induced action of
S(f, BB)/Qf on Y is not in general effective.

Theorem 1.5. The quotient group S(f, BB)/Qf freely acts on Ŷ, and we
have an isomorphism

π0Qf – Z ˆ

n
ź

i=0

Pf (Yi). (1.3)

In particular, if S(f, BB) = Qf , then

Pf (B) – Z ˆ

n
ź

i=0

Pf (Yi). (1.4)

The case when the group S(f, BB)/Qf is non-trivial will be considered
in another paper.
Due to (1) of Theorem 1.3 a knowledge of Pf (B) will allow to compute

Pf (M) for all non-orientable surfaces with χ(M) ă 0. Together with re-
sults of [10], describing algebraic structure of Pf (M) for M being 2-disk
and annulus, this will give a complete description of the groups Pf (M)
for all compact surfaces except for 2-sphere, projective plane, and Klein
bottle. Also during the proof of Theorem 1.5 we will get a more detailed
information about Pf (B).

Examples. Let A = S1ˆ [0, 1] be an annulus, ξ(ϕ, t) = (ϕ+π, 1´t) be the
involution without fixed points and changing orientation of A, so B = A/ξ
is a Möbius band, and the quotient map p : A Ñ B is an orientable double
covering of B. Figure 1.2 contains examples of critical components K level-
sets of Morse functions f : B Ñ R described by Theorem 1.4 and their
preimages in A. In order to simplify the illustration we denote by Yi the
connected components of BzK (not of BzW as in Theorem 1.4), and by
X 1
i and X2

i connected components of p´1(Yi) for i ě 1.
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(a) (b)

(c) (d)

FIGURE 1.2. Critical level sets of several functions on the
Möbius band

Case (a). There exists h P S(f, BB) such that h(Y1) = Y1 and it reverses
orientation of Yi. Then S(f, BB)/Qf – Z2 and this group is generated
by the isotopy class of h. Moreover, the action of S(f, BB)/Qf on Ŷ is
transitive.
Case (b). In this case S(f, BB)/Qf – Z4 is generated by the isotopy

class of h P S(f, BB) such that h(Y1) = Y2, h(Y2) = Y1 and h2 reverses
orientations of both Y1 and Y2. Now the action of S(f, BB)/Qf on Ŷ is
transitive as well.
Case (c). Evidently, each h P S(f, BB) preserves each Yi, i = 1, 2, 3, with

its orientation. This means that S(f, BB) = Qf , so the group S(f, BB)/Qf
is trivial.
Case (d). Now S(f, BB)/Qf – Z2 is generated by the isotopy class of

h P S(f, BB) such that
h(Y1,+) = (Y1,´), h(Y2,+) = (Y2,´), h(Y3) = (Y4), h(Y4) = (Y3).

Structure of the paper. In §2 we recall the notion of the Kronrod-Reeb
graph of a map f P F(M,P ), and in §3 prove of Theorem 1.4. §4 contains
certain results about relations of diffeomorphism groups of a non-orientable
manifold and its double covering. In §5 we recall the notion of a Hamil-
tonian like flow for a function on an orientable surface. In §6 we introduce
several subgroups of S(f) and prove Theorem 6.2 allowing to “simplify” dif-
feomorphisms from the stabilizer of f P F(M,P ). These results extend [10,
§3 & §7] to non-orientable case. §7 describes the relation between the
groups S(f, BA) and S 1(f, BA) for functions on the annulus A = S1 ˆ [0, 1],
see Lemma 7.1. Finally in §8 we prove Theorem 1.5.
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2. KRONROD-REEB GRAPH
Let M be a compact surface. Given f P F(M,P ) consider the partition

of M into connected components of level sets of f . Let also Γf be the set
of elements of that partition and p :M Ñ Γf be the quotient map. Endow
Γf with the corresponding quotient topology, so a subset W Ă Γf is open
if and only if p´1(W ) is open in M .
Since f takes constant values on connected components of BM and has

only finitely many critical points, it follows that Γf is a “topological graph”,
i.e. a one-dimensional CW-complex. It is also called the Kronrod-Reeb
graph or simply the graph of f .
The following statement is well known for Morse maps, and can easily be

extended to maps M Ñ P with isolated critical points and taking constant
values at each connected component of BM .

Lemma 2.1. cf. [2, Corollary 3.8]. Let f P F(M,P ). Then the quotient
mapping p :M Ñ Γf induces an epimorphism

p˚ : H1(M, BM,Z) ÑÑ H1(Γf ,Z)

between the corresponding integer homology groups.
Proof. One easily shows that there exists a continuous map s : Γf Ñ M
such that p ˝ s is homotopic to idΓf

, so s is a “homotopical section” of the
map p :M Ñ Γf . Hence we get the following commutative diagram

H1(M,Z)
p˚

&& &&NN
NNN

NNN
NNN

H1(Γf ,Z)
* 


s˚

88ppppppppppp id // H1(Γf ,Z)

implying surjectivity of p˚. □

Corollary 2.2. LetM be either a 2-sphere or a projective plane with k ě 0
holes. Then for each f P F(M,P ) the homomorphism p˚ is zero, whence
the Kronrod-Reeb graph Γf of f is a tree.
Proof. Indeed, for such surfaces the homomorphism

i˚ : H1(BM,Z) Ñ H1(M,Z)

induced by the inclusion i : BM Ă M is surjective. Since f takes constant
values at boundary components of M , it follows that p˚ ˝ i˚ = 0, whence
p˚ is zero epimorphism. Therefore H1(Γf ,Z) = 0 and so Γf is a tree. □
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3. PROOF OF THEOREM 1.5
Let B be a Möbius band, f P F(B,P ), and Γf be the Kronrod-Reeb of f

being due to Corollary 2.2 a tree. We have to find a connected component
K of some level set of f satisfying statement of Theorem 1.5.
Recall that up to an isotopy and changing of orientation there are exactly

two classes of two-sided simple closed curves on Möbius strip:
(B) a curve isotopic to BB and dividing B into an annulus and a Möbius

strip;
(N ) a null-homotopic curve dividing B into a 2-disk and a Möbius strip

with a hole.
In particular, each regular component γ of each level-set of f is a two-

sided simple closed curve in B, and so it has one of the above types (B) or
(N ). Notice that p(γ) is an internal point of some open edge e of Γf . If γ1

is another regular component of some level set such that p(γ1) P e, then γ1

is isotopic to γ, and therefore it has the same type (B) or (N ) as γ. Hence
one can associate to each edge e of Γf the type (B) or (N ) being the type
of p´1(w), where w is any point in e.
Therefore Theorem 1.5 can be reformulated as follows: there exists a

unique vertex v P Γf having exactly one incident (B)-edge. In that case
K = p´1(v).
For the proof we need the following lemma. Denote by v0 = p(BB) the

vertex of Γf corresponding to the boundary of B.

Lemma 3.1. (i) A vertex v P Γf can not have more than two incident
(B)-edges.
(ii) Let e be an open (N )-edge, w P e be a point, and Tw be a connected

component of Γfzw that does not contain v0. Then every edge in Tw is of
type (N ) as well.
Proof. (i) Let p´1(v) be the critical component of some level set of f
corresponding to v, e1, . . . , em be all the (B)-edges incident to v, and γi,
i = 1, . . . ,m be a connected component of a level-set of f corresponding
to some point of ei. Let also Q = B z

m
Y
i=1

γi, and Q0, Q1, . . . , Qk be all the
connected components of Q. One can assume that p´1(v) Ă Q0, whence

m
Y
i=1

γi Ă Q0

as well.
Now by assumption any two curves γi and γj are disjoint, not null ho-

motopic, and isotopic each other. Hence they bound an annulus Aij in B
with BAij = γi Y γj .
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Assume now that m ě 3, so we have at least three annuli A12, A13 and
A23. Then their union Z = A12 YA13 YA23 is connected.
If the interiors of those annuli were mutually disjoint, then

(A12zγ1) XA23 = γ2 = ∅, (A13zγ1) XA23 = γ3 = ∅,

whence
Zzγ1 = (A12zγ1) YA23 Y (A13zγ1)

would be connected which contradicts to the property that Bzγ1 is discon-
nected.
Hence, renumbering indexes if necessary, one can assume that A12 Ă A13,

and so γ2 Ă IntA13. But γ2 Ă Q0 as well, whence
Q0 Ă A13z(γ1 Y γ2 Y γ3) = IntA12 Y IntA23,

and therefore Q0 is contained either in IntA12 or in IntA23. Assume for
definiteness that Q0 Ă IntA12. Then Q0 Ă A12 Ă B zγ3 which contradict
to the assumption that m

Y
i=1

γi Ă Q0. Hence m ď 2.

(ii) Notice that p´1(Tw) is an open disk. Hence if e1 Ă Tw is an open
edge and w1 P e1 is a point, then the curve p´1(w) bounds in p´1(Tw) a
disk, and so e1 is of type (N ). □

Now we can finish Theorem 1.5. First we show that such a vertex v
exists. Let v0 = p(BB), and e0 = (v0, v1) be a unique edge of Γf incident to
v0, where v1 is another vertex of e0. Evidently, e0 is of type (B). If there is
no other (B)-edges incident to v1 except for e0, then v = v1 is the required
vertex.
Otherwise, due to (i) of Lemma 3.1 exists a unique (B)-edge e1 = (v1, v2)

incident to v1 and distinct from e0. Applying the same arguments to e1
and so on we will stop (due to the finiteness of Γf ) at a unique path

π : e0 = (v0, v1), e1 = (v1, v2), . . . , em = (vm, v)

of mutually distinct (B)-edges such that its end vertex v has a unique (B)-
edge.
Let us prove a uniqueness v. Let v1 be a vertex of Γf distinct from v and

k be the number of (B)-edges incident to v1. We should prove that k = 0
or 2. If v1 P π, then by the construction k = 2.
We claim that k = 0 for all other vertices. Indeed, let T be the connected

component of the complement Γfzπ containing v1. Then T is a subtree
having a unique common vertex, say vi, with the path π. Let e1 = (vi, v

1
i)

be a unique edge belonging to T . Then by the construction e1 is of type
(N ), whence by (ii) of Lemma 3.1 all other edges of T are also of type (N ).
In particular, so are all edges incident to v1, whence k = 0. □
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4. DIFFEOMORPHISMS OF NON-ORIENTABLE MANIFOLDS
Let N be a smooth non-orientable connected manifold of dimension m,

p : M Ñ N be the oriented double covering of N , and ξ : M Ñ M be
the corresponding C8 diffeomorphism without fixed points generating the
group Z2 of covering transformations, that is ξ2 = idM and p ˝ ξ = p.
A diffeomorphism h̃ P D(M) will be called symmetric if it commutes

with ξ, that is h̃˝ ξ = ξ ˝ h̃. Denote by rD(M,X) the group of all symmetric
diffeomorphisms of M fixed on a closed subset X Ă M and by rDid(M,X)

the identity path component of rD(M,X). If X is empty, we will just omit
it from notation.
The aim of this section is to find precise relations between the groups

D(N) and rD(M), see Lemma 4.2 below.

Lemma 4.1. Let Y Ă N be a path connected subset. Then its preimage
X = p´1(Y ) is either path connected or consists of two disjoint path com-
ponents which are interchanged by ξ.
Proof. One easily deduces from path lifting axiom for the covering map
p :M Ñ N , that p(X) = Y for every path component X 1 of X. Hence for
every point y P Y its inverse image p´1(y) intersects each path component
of X. But p´1(y) consists of two points, say x and ξ(x), whence X must
consist of either one or two path components. Moreover, if X has two path
componentsX 1 andX2 such that x P X 1 and ξ(x) P X2, then ξ interchanges
x and ξ(x) as well as path components X 1 and X2. □

Lemma 4.2. Each q P rD(M) yields a diffeomorphism h P D(N) such that
p ˝ q = h ˝ p, and the correspondence q ÞÑ h is a continuous epimorphism
ρ : rD(M) Ñ D(N) with kernel ker(ρ) = tidM , ξu – Z2. Moreover, ρ yields
an isomorphism of rD+(M) onto D(N), so we get the following commutative
diagram whose rows are exact and all vertical arrows are isomorphisms:

Z2
� � i ÞÑ (i,idM ) //

i ÞÑ ξi–

��

Z2 ˆ rD+(M)
(i,q) ÞÑ q // //

(i,q) ÞÑ ξi˝q–

��

rD+(M)

ρ

��
xξy

� � // rD(M)
ρ // // D(N)

s

LL
(4.1)

where s is the inverse to ρ.
Moreover, s also induces the isomorphisms described below.

(1) For every subset Y Ă N we have an isomorphism

s : Did(N,Y ) – rDid(M,p´1(Y )). (4.2)
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(2) Suppose Y Ă N is a subset such that for every path component Y 1 of
Y and q P rD+(M) the restrictions

q|p´1(Y 1), ξ|p´1(Y 1) : p
´1(Y 1) Ñ M

are distinct maps, that is they take distinct values at some point. Then
we also have an isomorphism

s : D(N,Y ) – rD(M,p´1(Y )). (4.3)
For instance, this hold if Y is an m-dimensional submanifold or a two-
sided (m ´ 1)-dimensional submanifold, but does not hold e.g. when Y
is a finite subset.

Proof. Let q P rD(M) and h = ρ(q) P D(N). Then ρ´1(h) consists of two
diffeomorphisms q and ξ ˝q one of which preserves orientation, and another
one reverses it. Denote by s(h) those one which preserves orientation. Then
the correspondence h ÞÑ s(h) is a continuous homomorphism

s : D(N) Ñ rD+(M)

satisfying ρ ˝ s = idD(N). Since by definition ξ commutes with all rD(M)
and generates the kernel of ρ, we get the desired diagram (4.1).
(1) First notice that rDid(M) is also the identity path component of

rD+(M). Hence ρ induces an isomorphism of rDid(M) onto the path com-
ponent Did(N) of D(N), whence we get the inverse isomorphism

s : Did(N) – rDid(M)

coinciding with (4.2) for the case Y = ∅.
Suppose now that Y Ă N is a non-empty subset and let X = p´1(Y ).

Evidently, ρ
(

rD(M,X)
)

Ă D(N,Y ), that is if h P rD(M) is fixed on X, then
ρ(q) is fixed on Y . Hence

ρ
(

rDid(M,X)
)

Ă Did(N,Y ).

Conversely, let h P Did(N,Y ), so there is an isotopy H : N ˆ [0, 1] Ñ N
such that H0 = idN , H1 = h, and each Ht is fixed on Y . Since p is a
covering map, H lifts to a unique isotopy rH : M ˆ [0, 1] Ñ M such that
rH0 = idM and ρ( rHt) = Ht. In particular, rHt P rDid(M) Ă rD+(M), and so
rHt = s(Ht).
It remains to show that each rHt is fixed on X, which will imply that

s(Did(N,Y )) Ă rDid(M,X)

and give the isomorphism (1). Let x P X and y = p(x) P Y . Since
H(xˆ [0, 1]) = y, it follows that

rH(xˆ [0, 1]) Ă p´1(y) = tx, ξ(x)u.
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But the latter set is discrete and rH(x, 0) = x, whence rH(xˆ [0, 1]) = x as
well. Thus rHt is fixed on X.

(2) Let X = p´1(Y ), so the restriction p : X Ñ Y is a double covering
map. As noted above ρ

(
rD(M,X)

)
Ă D(N,Y ), and so we should only check

that
s
(
D(N,Y )

)
Ă rD(M,X). (4.4)

a) Suppose that the set Y is path connected. Let also h P D(N,Y ) and
q = s(h) P rD+(M). To prove (4.4) we should check that q is fixed on X.
Since h is fixed on Y , it follows that q(x) P tx, ξ(x)u for all x P X. By

assumption h|X = ξ|X , so there exists a point x P X such that q(x) = ξ(x),
whence q(x) = x.
Let X 1 be the path component of X containing x. Then q(X 1) = X 1

and the restriction q|X 1 : X 1 Ñ X 1 is a unique lifting of the identity map
idY : Y Ñ Y for the covering map p|X : X Ñ Y having the property that
q(x) = x. Hence q|X is the identity, i.e. q is fixed on X 1.
Furthermore, suppose there exists another path component X2 of X.

Then by Lemma 4.1 ξ(X 1) = X2 and ξ(x) P X2. Since q(X 1) = X 1,
it follows that q(X2) = X2 and therefore q(ξ(x)) = ξ(x). Hence q has
a fixed point in X2, and so it is fixed on X2 as well. In other words
s(h) = q P rD(M,X), which proves (4.4) for the case when Y is path
connected.

b) Now suppose Y is not path connected, and let tYiuiPΛ the collection
of all path components of Y , so Y = Y

iPΛ
Yi. Then by a)

s
(
D(N,Yi)

)
= rD(M,p´1(Yi)), i P Λ.

Hence

s
(
D(N,Y )

)
= s

(
D(N, Y

iPΛ
Yi)

)
= s

(
X
iPΛ

D(N,Yi)
)
= X

iPΛ
s
(
D(M,Yi)

)
=

= X
iPΛ

rD(M,p´1(Yi)
)
= rD(M, Y

iPΛ
p´1(Yi)

)
= rD(M,p´1(Y )

)
.

Lemma is proved. □

Lemma 4.3. Let f : N Ñ P be a C8 map, g = f ˝ p :M Ñ P ,

S(f) := th P D(N) | f ˝ h = fu, rS(g) := tq P rD(N) | g ˝ q = gu.

The following statements hold true.
(a) ρ( rS(g)) = S(f) and ρ´1(S(f)) = rS(g);
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(b) Suppose dimN = 2, f P F(N,P ), and let Y be an f -adopted sub-
manifold. Then s induces an isomorphism

s : S(f, Y ) – rS(g, p´1(Y )). (4.5)

Proof. Let q P rD(M) and h = ρ(q) P D(N), so
q ˝ ξ = ξ ˝ q, p ˝ q = h ˝ p, g = f ˝ p. (4.6)

We have to show that h P S(f) if and only if q P rS(g), i.e. we need to
deduce from (4.6) an equivalence of the following relations:

f ˝ h = f, g ˝ q = g.

Let x P M and y = p(x). If g ˝ q(x) = g(x), then
f ˝ h(y) = f ˝ h ˝ p(y) = f ˝ p ˝ q(x) = g ˝ q(x) = g(x) = f ˝ p(x) = f(y).

Conversely, if f ˝ h(y) = f(y), then
g ˝ q(x) = f ˝ p ˝ q(x) = f ˝ h ˝ p(x) = f ˝ p(x) = g(x).

(b) Denote X = p´1(Y ). Since X is a g-adopted submanifold, one easily
checks that S(g,X) Ă D+(M). Hence by (a) and Lemma 4.2 ρ injectively
maps rS(g,X) into S(f, Y ).
Conversely, it follows from (a) that s(S(f)) Ă rS(g). Therefore we get

from statement (2) of Lemma 4.2 that
s
(
S(f, Y )

)
= s

(
S(f) X D(N,Y )

)
Ă rS(f) X rD(M,X) = rS(f,X).

Since ρ ˝ s = idD+(M), it follows that s isomorphically maps S(f, Y ) onto
rS(f,X). □

5. HAMILTONIAN LIKE FLOWS FOR g P F(M,P ).
Let M be an orientable compact surface.

Definition 5.1. Let g P F(M,P ) and Σf be the set of critical points of g.
A smooth vector field F on M will be called Hamiltonian like for g if the
following conditions hold true.
(a) F (z) = 0 if and only if z is a critical point of g.
(b) F (g) ” 0 everywhere on M , that is g is constant along orbits of F .
(c) Let z be a critical point of g. Then there exists a local representation

of g at z as a homogeneous polynomial v : (R2, 0) Ñ (R, 0) without
multiple factors (as in Definition 1.1) such that in the same coordinates
(x, y) near the origin 0 in R2 we have that F = ´v1

y
B

Bx + v1
x

B
By .

It follows from (a) and Definition 1.1 that every orbit of F is of one of
the following types:
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‚ a critical point of g;
‚ a regular component of some level set of g, and so it is a closed orbit
of F ;

‚ a connected component of the setsKzΣf , whereK runs over all critical
components of level-sets of g.

By [11, Lemma 5.1] or [13, Lemma 16] for every g P F(M,P ) there exists
a Hamiltonian like vector field. For the proof take the Hamiltonian vec-
tor field F for g with respect to any symplectic form ω on M , and then
properly change F near each critical point of g in accordance with (c) of
Definition 5.1.
Let F be a Hamiltonian like vector field for g. Since g takes constant

values on boundary components of M , it follows that F is tangent to BM
and therefore it generates a flow F :M ˆ R Ñ M which will also be called
Hamiltonian like for g.
For each smooth function α : M Ñ R let Fα : M Ñ M be the map

defined by
Fα(x) = F(x, α(x)), x P M. (5.1)

We will call Fα the shift along orbits of F via the function α. In turn, α
will be called a shift function for Fα.
Evidently, condition (b) of Definition 5.1 is equivalent to the assumption

that
g ˝ Ft = g

for all t P R, that is Ft P S(g).
More generally, since Fα leaves invariant each orbit of F, we see that

g ˝ Fα = g for every function α P C8(M,R). In particular, Fα is a diffeo-
morphism if and only if Fα P S(g). Moreover, in this case Fα P Sid(g) and
tFtαutP[0,1] is an isotopy between idM and Fα.
Denote by F (α) the Lie derivative of α with respect to F and let

Θ(F ) = tα P C8(M,R) | 1 + F (α) ą ´0u. (5.2)

Theorem 5.2. [11, Theorem 1.3], [13, Theorem 3]. Let g P F(M,P ),
F : M ˆ R Ñ M be the flow generated by some Hamiltonian vector field
F , and φF : Θ(F ) Ñ Sid(g) be the map defined by φF (α) = Fα. If g has
at least one saddle or a degenerate local extreme, then φF is a homeomorphism
with respect to C8 topologies and Sid(g) is contractible (because Θ(F ) is
convex).
Otherwise, there exists θ P Θ(F ) such that φF can be represented as a

composition

φF : Θ(F )
quotient

ÝÝÝÝÝÝÑ Θ(F )/tnθunPZ
homeomorphism

ÝÝÝÝÝÝÝÝÝÝÑ Sid(g)
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of the quotient map by the closed discrete subgroup Z = tnθunPZ of Θ(F ) and
a homeomorphism of the quotient of Θ(F ) by Z onto Sid(g). In particular,
φF is an infinite cyclic covering map and Sid(g) is homotopy equivalent to
the circle.

6. GROUPS ∆(f)

For f P F(N,P ) let ∆(f) be the normal subgroup of S(f) consisting of
diffeomorphisms h of N having the following two properties:
1) h leaves invariant every connected component of each level-set of f ;
2) if z is a degenerate local extreme of f , so, in particular, h(z) = z, then
the tangent map Tzh : TzN Ñ TzN is the identity.

For a closed subset Y of N define the following three groups:

D(N,Y ) = th P D(N) | h is fixed on Y u,

Dnb(N,Y ) = th P D(N) | h is fixed on some neighborhood of Y u,

Did(N,Y ) = th P D(N,Y ) | h is isotopic to idN rel. Y u.

Define also their intersections with ∆(f) and S(f) as follows:
∆(f, Y ) = ∆(f) X D(N,Y ), S(f, Y ) = S(f) X D(N,Y ),

∆nb(f, Y ) = ∆(f) X Dnb(N,Y ), Snb(f, Y ) = S(f) X Dnb(N,Y ),

∆1(f, Y ) = ∆(f) X Did(N,Y ), S 1(f, Y ) = S(f) X Did(N,Y ),

∆1
nb(f, Y ) = ∆1(f) X Dnb(N,Y ), S 1

nb(f, Y ) = S 1(f) X Dnb(N,Y ),

(6.1)

where we follow the convention that Y is omitted if it is empty. For example,
∆1(f) = ∆(f) X Did(M). The following lemma can be proved similarly to
[10, Lemma 3.4] and we leave its proof for the reader.

Lemma 6.1. cf. [10, Lemma 3.4]. All the groups in (6.1) are normal
subgroups of S(f, Y ).
The groups ∆1(f, Y ), ∆(f, Y ), S 1(f, Y ) are unions of path components

of S(f, Y ). In particular, Sid(f, Y ) is the identity path component of each
of these groups.
Similarly, the groups ∆1

nb(f, Y ), ∆nb(f, Y ), and S 1
nb(f, Y ) are also unions

of path components of Snb(f, Y ). □
It follows that π0∆(f, Y ) can be regarded as a normal subgroup of

π0S(f, Y ). Moreover, if f has no degenerate local extremes, then the cor-
responding quotient

G(f, Y ) :=
S(f, Y )

∆(f, Y )
=

S(f, Y )

Sid(f, Y )

/ ∆(f, Y )

Sid(f, Y )
=
π0S(f, Y )

π0∆(f, Y )
.
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can be interpreted as the group of automorphisms of the Kronrod-Reeb
graph of f induced by diffeomorphisms from S(f, Y ), see e.g. [5], [19], [1],
[13]. If f has degenerate local extremes, then there is a similar interpreta-
tion of G(f, Y ) but one should modify Kronrod-Reeb graph of f by gluing
additional edges to each vertex corresponding to each degenerate local ex-
treme, see for details [13]. Similarly, one can define

G1(f, Y ) =
π0S 1(f, Y )

π0∆1(f, Y )
, Gnb(f, Y ) =

π0Snb(f, Y )

π0∆nb(f, Y )
,

G1
nb(f, Y ) =

π0S 1
nb(f, Y )

π0∆1
nb(f, Y )

.

Our aim is to prove the following statement extending [10, Corollary 7.2]
to non-orientable case and deduce from it several useful results.

Theorem 6.2. cf. [11, Corollary 6.1], [10, Corollary 7.2]. Let N be a
compact surface, f P F(N,P ), Y Ă N be a compact f -adopted submanifold,
and UY be an f -regular neighborhood of Y . Then the following inclusions
are homotopy equivalences:

S(f, UY ) Ă Snb(f, Y ) Ă S(f, Y ), (6.2)
S 1(f, UY ) Ă S 1

nb(f, Y ) Ă S 1(f, Y ), (6.3)
∆(f, UY ) Ă ∆nb(f, Y ) Ă ∆(f, Y ), (6.4)
∆1(f, UY ) Ă ∆1

nb(f, Y ) Ă ∆1(f, Y ). (6.5)
Proof. The case when N is orientable is proved in [10]. So our aim is to
extend it to the case when N is non-orientable. In fact the proof is an
adaptation of [10, Lemma 7.1] similar to [11, Lemma 4.14] and therefore
we only indicate the principal arguments.
Also notice that similarly to [10, Corollary 7.2] it suffices to prove that

the inclusions (6.2) are homotopy equivalences, so they induce bijections
between the path components of the corresponding groups, and the inclu-
sions of the corresponding path components are homotopy equivalences.
Indeed, notice that the groups in (6.3) are intersections of the correspon-

ding groups from (6.2) with the path component Did(N) of the larger group
D(N). If a path component K of any group in (6.3) intersects Did(N), then
K is contained in Did(N). Hence the inclusions (6.3) yield bijections be-
tween the path components of the corresponding groups, and due to (6.2)
the inclusions of path components are homotopy equivalences.
The deduction that (6.4) and (6.5) are homotopy equivalences is similar.
Thus assume thatN is a non-orientable connected compact surface. Con-

sider its oriented double covering p : M Ñ N , and let ξ : M Ñ M be the
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corresponding C8 diffeomorphism without fixed points generating the group
Z2 of covering transformations, that is ξ2 = idM and p ˝ ξ = p.
Denote g = f ˝ p : M Ñ P , X = p´1(Y ), and UX = p´1(UY ). Then

g P F(M,P ), Y Ă N is a compact g-adopted submanifold of M , and UX
is a g-regular neighborhood of X.
Fix a Hamiltonian like vector field F for g onM and let F :M ˆR Ñ M

be the flow generated by F .
Let ξ˚F = Tξ´1 ˝F ˝ ξ :M Ñ TM be the vector field on M induced by

ξ from F . Then one can always assume, see [11, Lemma 5.1 (2)], that F is
also skew-symmetric with respect to ξ in the sense that ξ˚F = ´F , whence

ξ ˝ Ft = F´t ˝ ξ (6.6)
for all t P R. Indeed, it is enough to replace F with 1

2(F + ξ˚F ) and
properly change it near critical points of f in order to preserve property (c)
of Definition 5.1.

Lemma 6.2.1. cf. [11, Lemma 4.14], [10, Lemma 7.1]. Let A Ă S(g) be a
subset and γ : A Ñ C8(X,R) be a continuous map such that

q(x) = F(x, γ(q)(x)) (6.7)
for all q P A and x P X. Then for any pair U Ă V of g-regular
neighborhoods of X such that U Ă IntV , there exists a continuous map
β : A Ñ Θ(F ) Ă C8(M,R), see (5.2), satisfying the following conditions.
(1) For each q P A the function β(q) extends γ(q) to all M , satisfies

relation (6.7) on U , and vanishes on MzV , that is
‚ β(q) = γ(q) on X,
‚ q(x) = F(x, β(q)(x)) for all x P U ,
‚ β(q) = 0 on MzV .

(2) If γ(q) = 0 and q is fixed on some g-regular neighborhood U 1 Ă U ,
then β(q) ” 0 on U 1 as well.
(3) The homotopy H : A ˆ I Ñ S(g) defined by

H(q, t) = (Ftβ(q))´1 ˝ q

has the following properties:
(a) H0 = idA and H1(A) Ă S(g, U), so it deforms A in S(g) into

S(g, U);
(b) if γ(q) ” 0 and q is fixed on some g-regular neighborhood U 1 Ă U ,

then Ht(q) is fixed on U 1 for all t P [0, 1] as well.

Suppose in addition that F is skew-symmetric, that is ξ˚F = ´F , and
either of the following conditions hold:
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(i) every connected component of X contains a critical point of g being
not a non-degenerate local extreme;

(ii) γ(q) ” 0 for all q P A X rS(g).
Then one can assume that

(4) β(q) ˝ ξ = ´β(q) for each q P A X rS(g);
(5) H

(
(A X rS(g)) ˆ I

)
Ă rS(g), that is the set of ξ-symmetric diffeo-

morphisms remains invariant with respect to the homotopy H.
Proof. Statements (1)-(3) constitute [10, Lemma 7.1]. So we should verify
statements (4) and (5) concerning skew-symmetric diffeomorphisms.
Let us briefly recall the idea of proof. Since UX is a g-regular neigh-

borhood of X, for each q P A the function γ(q) : X Ñ R uniquely ex-
tends to a C8 function rγ(q) : V Ñ R such that (6.7) holds on V , that is
q(x) = F(x, rγ(q)(x)) for all x P V . Moreover, the correspondence q Ñ rγ(q)
is a continuous map rγ : A Ñ C8(V,R).
Fix a C8 function µ : M Ñ [0, 1] with the following properties:

‚ µ = 0 on some neighborhood of MzV ;
‚ µ = 1 on some neighborhood of U ;
‚ F (µ) = 0, that is µ take constant values along orbits of F .

Then the required map β : A Ñ C8(M,R) can be defined by

β(q)(x) =

#

rγ(q)(x) ¨ µ(x), for x P V,

0, for x P MzV.
(6.8)

Suppose now that F is skew-symmetric with respect to ξ. We will show
below that in this case

´ rγ(q) ˝ ξ = rγ(q), (6.9)
for all q P A X rS(g).
Assuming that (6.9) holds let us complete the proof of Lemma 6.2.1.

Since U and V are invariant with respect to ξ, and ξ maps orbits of F onto
orbits, one can replace the function µ with 1

2(µ + µ ˝ ξ) not violating the
above conditions on µ and thus additionally assume that

µ ˝ ξ = µ. (6.10)
Now if we define β by the same formula (6.8) then conditions (4) and (5)
will hold true.
(4) If q P A X rS(g) and x P V , then

β(q) ˝ ξ(x) = rγ(q) ˝ ξ(x) ¨ µ ˝ ξ(x)
(6.9), (6.10)
====== ´rγ(q)(x) ¨ µ(x) = ´β(q)(x).
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On the other hand, if x P MzV , then ξ(x) P MzV as well, and so
β(q)(x) = β(q) ˝ ξ(x) = 0.

(5) Notice that for each q P A X rS(g) and t P [0, 1] we have that

Ftβ(q) ˝ ξ(x) = Ftβ(q)˝ξ(x)(ξ(x))
(6.6)
=== ξ ˝ F´tβ(q)˝ξ(x)(x)

(4)
==

= ξ ˝ Ftβ(q)(x)(x) = ξ ˝ Ftβ(q)(x).

This means that the map Ftβ(q) belongs to rS(g), whence

H(q, t) = (Ftβ(q))´1 ˝ q P rS(g)

as well.
Thus it remains to prove (6.9). Let q P A X rS(g), so

q ˝ ξ = ξ ˝ q, q(x) = F(x, rγ(q)(x))
for all x P V . Then

q ˝ ξ(x) = F
(
ξ(x), rγ(q) ˝ ξ(x)

)
= F

rγ(q)˝ξ(x) ˝ ξ(x)
(6.6)
=== ξ ˝ F´rγ(q)˝ξ(x)(x).

ξ ˝ q(x) = ξ ˝ F
(
x, rγ(q)(x)

)
= ξ ˝ F

rγ(q)(x)(x).

Hence
F´rγ(q)˝ξ(x)(x) = Frγ(q)(x)(x) = q(x)

for all x P V . In other words, ´rγ(q) ˝ ξ and rγ(q) are shift functions for q
on V .
(i) Suppose that each connected component Y of X contains either a

degenerate local extreme or a saddle critical point of g. Then the shift map
on VY is injective, i.e. any two shift functions for q on VY must coincide.
Hence ´rγ(q) ˝ ξ and rγ(q) coincide on all of V .
(ii) If γ(q) ” 0 on all of X, then γ(q) = ´γ(q) ˝ ξ = 0 on X as well since

ξ(X) = X. Moreover, as V is a g-regular neighborhood of X, X inter-
sects interiors of all connected components of V . It then follows from [10,
Lemma 6.1(ii)] that ´rγ(q) ˝ ξ and rγ(q) coincide on all of V . Lemma 6.2.1
is completed. □

Now we can prove that the inclusions (6.2) are homotopy equivalences.
Due to Lemma 4.3(b) we can identify groups in (6.2) with their “symmet-
ric” variants, and so it suffices to show that the following inclusions are
homotopy equivalences:

rS(g, UX) Ă rSnb(g,X) Ă rS(g,X). (6.11)
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Let V be an arbitrary g-regular neighborhood of UX , A = rS(g,X), and
γ : A Ñ C8(X,R) be a constant map into the zero function. Then for each
x P X and q P A we have that

F(x, γ(q)(x)) = F(x, 0) = x = q(x).

Hence by Lemma 6.2.1(5) there exists a homotopy H : A ˆ I Ñ S(g) such
that

‚ H0 = idA and H1(A) Ă rS(g, V );
‚ if q P A is fixed on some g-regular neighborhood of X contained in
UX , then so is Ht(q) for all t P [0, 1];

In other words, H is a deformation of A = rS(g,X) into rS(g, V ) which
leaves invariant rS(g, UX) and rSnb(g,X). Hence the inclusions (6.11) and
therefore (6.2) are homotopy equivalences. □

Simplification of diffeomorphisms preserving a function via iso-
topies. Let N be a non-orientable compact connected surface, p :M Ñ N
be the orientable double covering, and ξ : M Ñ M be an involution with-
out fixed points generating the group Z2 of covering transformations. Let
also f P F(N,P ) and g = f ˝ p P F(M,P ). Since M is orientable, one can
construct a skew-symmetric Hamiltonian like flow F on M for g.
Let Y Ă N be a connected f -adopted subsurface and W Ă N be an

f -adopted submanifold. Denote X = p´1(Y ) and V = p´1(W ).
Let also S(g, V ;X) the subset of S(g, V ) consisting of diffeomorphisms

q admitting a C8 function αq : X Ñ R with the following properties:
(1) q(x) = F(x, αq(x)) for all x P X;
(2) αq = 0 on X X V .
Denote

rS(g, V ;X) := S(g, V ;X) X rD(M).

Evidently, we have the following inclusion:
rS(g, V YX) Ă rS(g, V ;X), (6.12)

since for each q P rS(g, V YX) one can set αq ” 0 on X.
Using isomorphism s from (4.5) put
S(f,W ;Y ) := s´1

(
rS(g, V ;X)

)
, ∆(f,W ;Y ) := ∆(f) X S(f,W ;Y ).

Then we obviously have the following inclusions:
∆(f,W Y Y ) Ă ∆(f,W ;Y ), S(f,W Y Y ) Ă S(f,W ;Y ) (6.13)

Corollary 6.3. cf. [10, Corollary 7.3]. Let N be a compact surface (ori-
entable or not), f P F(N,P ), W be an f -adapted submanifold, and Y be a
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connected f -adapted subsurface containing at least one saddle critical point
of f . Then the inclusions (6.13) are homotopy equivalences.
Proof. Since ∆(f) consists of path components of S(f), it suffices to show
only that the second inclusion is a homotopy equivalence.
For orientable N this statement coincides with [10, Corollary 7.3]. Let us

briefly recall the main steps of its proof. Since Y is connected and contains
saddle critical points of f , one can show that for every h P S(f,W ;Y ) the
function αh is unique and the correspondence h ÞÑ αh is a continuous map
γ : S(f,W ;Y ) Ñ C8(Y,R). Then existence of a deformation of S(f,W ;Y )
into S(f,W Y Y ) is guaranteed by [10, Lemma 7.1] which is the same as
Lemma 6.2.1.
Suppose N is non-orientable. Let p : M Ñ N be the orientable double

covering, and ξ :M Ñ M be an involution without fixed points generating
the group Z2 of covering transformations, g = f ˝ p P F(M,P ), and F
be a skew-symmetric Hamiltonian like vector field for g on M . Denote
X = p´1(Y ) and V = p´1(W ). Then, by the orientable case, the inclusion
S(g, V Y X) Ă S(g, V ;X) is a homotopy equivalence. Moreover, by (i)
and (ii) of Lemma 6.2.1 the deformation of S(g, V ;X) to S(g, V Y X)
preserves ξ-symmetric diffeomorphisms, which implies that the inclusion
rS(g, V YX) Ă rS(g, V ;X) is a homotopy equivalence as well.
Finally, we have isomorphisms of topological groups (4.5):

s : S(f,W Y Y ) Ñ rS(g, V YX), s : S(f,W ;Y ) Ñ rS(g, V ;X),

whence the inclusion S(f,W YY ) Ă S(f,W ;Y ) is a homotopy equivalence
as well. □

7. FUNCTIONS ON ANNULUS
Lemma 7.1. Let A = S1 ˆ [0, 1] and f P F(A,P ). Then we have the
following commutative diagram

π0∆(f, BA) � � j //

–

��

π0S(f, BA)

ψ–

��

// // G(f, BA)

–

��
Z ˆ π0∆

1(f, BA) � � idZˆj // Z ˆ π0S 1(f, BA) // // G1(f, BA)

(7.1)

in which j is induced by the inclusion ∆(f, BA) Ă S(f, BA), the rows are
exact, and vertical arrows are isomorphisms.
Proof. Let U be an f -regular neighborhood of BA. Then one can construct
a Dehn twist τ : A Ñ A along S1 ˆ 0 supported in U and preserving f ,
that is τ P S(f, BA), see e.g. [11, §6].
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It is well known that the mapping class group π0D(A, BA) is freely gen-
erated by the isotopy class of τ , so we have the following sequence of ho-
momorphisms

α : D(A, BA) ÝÝÑ
D(A, BA)

Did(A, BA)
” π0D(A, BA)

–
ÝÝÝÑ Z,

where the first arrow is a natural homomorphism into the mapping class
group of A rel. BA associating to each h P D(A, BA) its isotopy class, and
the last arrow is an isomorphism. One can also assume that q(τ) = 1.
Hence the restriction of α to S(f, BA):

β = α|S(f,BA) : S(f, BA) ÑÑ Z

is surjective. Moreover,

ker(β) = S(f, BA) X ker(α) = S(f, BA) X Did(A, BA) =: S 1(f, BA).

Hence we have the following short exact sequence:

S 1(f, BA) ÑÑ S(f, BA) ã
β

ÝÝÑ Z, (7.2)

and β admits a right inverse σ : Z Ñ S(f, BA) defined by σ(k) = τk, i.e.
β ˝ σ = idZ.
Due to (6.2) there is an isomorphism induced by the natural inclusion:

π0S 1(f, U) – π0S 1(f, BA),

whence (7.2) reduces to the following exact sequence:

π0S 1(f, U) ãÑ π0S(f, BA)
β̂

ÝÝÑÑ Z,

in which β̂ admits a right inverse σ̂ : Z Ñ π0S(f, BA) given by σ̂(k) = [τ ]k,
k P Z.
As τ is supported in U , we see that τ commutes with each h P S 1(f, U).

Therefore the subgroups π0S 1(f, U) and x[τ ]y – Z mutually commute and
generate all the group π0S(f, BA). Hence an isomorphism (7.1) can be
defined by

ψ([h]) =
(
β(h), [h ˝ τ´β(h)]

)
,

for h P S(f, BA).
Regarding π0∆(f, BA) as a subgroup of π0S(f, BA), one easily checks

that ψ maps π0∆(f, BA) onto Zˆπ0S 1(f, BA), whence left and right vertical
arrows in (7.1) are isomorphisms. □
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8. PROOF OF THEOREM 1.5
By Theorem 1.4 there exists a unique a critical component K of some

level-set of f such that if W is an f -regular neighborhood of K, and
Y0, Y1, . . . , Yn are all the connected components of BzW enumerated so
that BB Ă Y0, then Y0 is an annulus S1 ˆ [0, 1], each Yk, k = 1, . . . , n, is a
2-disk, see Figure 8.1.

FIGURE 8.1.

There is also a natural action of S(f, BB) on Ŷ = tY1, . . . , Ynu ˆ t˘1u.

Proof that S(f, BB)/Qf freely acts on Ŷ. Let us paste BB with a 2-disk
and denote the obtained surface (being therefore a projective plane) with B̂.
Let also Ŷi, i = 0, 1, . . . , n, be the connected component of B̂zK containing
Yi. Then we have a CW-partition Ξ of B̂ whose 0-cells are critical points
of f belonging to K, 1-cells are connected components of the complement
KzΣf , and 2-cells are tŶiui=0,...,n.
Notice that each h P S(f, BB) extends to a unique homeomorphism ĥ

of B̂ fixed on B̂zB. Moreover, since h(K) = K, it also follows that ĥ is
Ξ-cellular, i.e. it induces a permutation of cells of Ξ.
Suppose ĥ(e) = e for some cell e of Ξ. If either

‚ dim e = 0 or
‚ dim e = 1, 2 and ĥ preserves its orientation

then we will say that e is ĥ+-invariant. In particular, ĥ has a ĥ+-invariant
cell Ŷ0.
Since ĥ is also isotopic to idB̂, its Lefschetz number L(ĥ) = χ(B̂) = 1.

Then it follows from [12, Corollary 5.6] that
(a) either the number of ĥ+-invariant cells of Ξ is χ(B̂) = 1, or
(b) all cells of Ξ are ĥ+-invariant.
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Suppose h(Yi,+) = (Yi,+) for some i P t1, . . . , nu. Then Ŷi is ĥ+-
invariant, and so ĥ has at least two ĥ+-invariant cells: Y0 and Yi. As
2 ą 1 = L(ĥ), we obtain from (b) that all cells of Ξ are ĥ+-invariant, which
implies that h(Yj ,+) = (Yj ,+) for all other j P t1, . . . , nu. This means that
the action of S(f, BB)/Qf on Ŷ is free.
It remains to construct at isomorphism (1.3)

π0Qf – Z ˆ

n
ź

i=0

Pf (Yi).

For the proof we need the following two lemmas.

Lemma 8.1. Qf = S(f, BB;W ).
Proof. Let h P S(f, BB;W ). Then Corollary 6.3 implies that h is isotopic
in S(f, BB;W ) to some diffeomorphism h1 P S(f, BB Y W ). Hence h and
h1 act on Ŷ in the same way. But h1 is fixed on W , and so on BYi for all
i = 1, . . . , k. Whence h1 leaves invariant each Yi and preserves its orienta-
tion, that is h1 P Qf . Therefore so does h, and thus h P Qf as well, i.e.
S(f, BB;W ) Ă Qf .
Conversely, let h P Qf , p : A Ñ B be the oriented double covering of B,

and q = s(h) P rS(g, BA) be a unique lifting of h fixed on BA. Then for each
i = 1, . . . , n the preimage p´1(Yi) consists of two connected components X 1

i
and X2

i , see Figure 8.1. The assumptions that h(Yi) = Yi and h preserves
orientation of Yi mean that q leaves invariant both X 1

i and X2
i and preserves

their orientations. Hence by [10, Lemma 7.4], q has a unique shift function
αq : p´1(W ) Ñ R. In other words, q P rS(g, BA; p´1(W )), whence by
definition h = s´1(q) = ρ(q) P S(f, BB;W ). □

Lemma 8.2. There exists a commutative diagram

π0∆(f, BB;W ) � � j //

–

��

π0S(f, BB;W )

ψ–

��

Z ˆ
n

ś

i=0
π0∆

1(f |Yi , BYi)
� � idZˆj0ˆ¨¨¨ˆjn // Z ˆ

n
ś

i=0
π0S 1(f |Yi , BYi)

in which j, j0, . . . , jn are induced by natural inclusions and the vertical
arrows are isomorphisms. In particular, we get an isomorphism (1.3):

π0Qf – π0S(f, BB;W ) – Z ˆ

n
ź

i=0

π0S 1(f |Yi , BYi) = Z ˆ

n
ź

i=0

Pf (Yi).
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Proof. As j is a monomorphism, it suffices to construct an isomorphism
ψ inducing the left vertical arrow. Due to Theorem 6.2 and Corollary 6.3
the following inclusions are homotopy equivalences:

Snb(f, BB YW ) Ă S(f, BB YW ) Ă S(f, BB;W ),

whence it is enough to compute the group π0Snb(f, BB Y W ). Notice that
there is a natural isomorphism

α : Snb(f, BB YW ) Ñ

n
ź

i=0

Snb(f |Yi , BYi), α(h) =
(
h|Y0 , . . . , h|Yn

)
,

inducing an isomorphism of the corresponding π0-groups:

π0Snb(f, BB YW ) –

n
ź

i=0

π0Snb(f |Yi , BYi).

Since Y0 is an annulus, we get from Lemma 7.1 that
π0Snb(f |Y0 , BY0) – Z ˆ π0S 1

nb(f |Y0 , BY0).

Moreover, Snb(f |Yi , BYi) = S 1
nb(f |Yi , BYi), i = 1, . . . , n, for all others 2-disks

Yi, whence we get the required isomorphism ψ:
ψ : π0Snb(f |Yi , BYi) = π0S 1

nb(f |Yi , BYi) – π0S 1(f |Yi , BYi).

It remains to note that ψ maps π0∆(f, BB;W ) (regarded a subgroup of
π0S(f, BB;W )) onto Z ˆ

n
ś

i=0
π0∆

1(f |Yi , BYi). We leave the details to the
reader. □
Theorem 1.5 is completed.
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