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Deformations of smooth functions on
2-torus

Bohdan Feshchenko

Abstract. Let f be a Morse function on a smooth compact surface M and
S 1(f) be the group of f -preserving diffeomorphisms of M which are isotopic
to the identity map. Let also G(f) be the group of automorphisms of the
Kronrod-Reeb graph of f induced by elements from S 1(f), and ∆1(f) be the
subgroup of S 1(f) consisting of diffeomorphisms which trivially act on the
Kronrod-Reeb graph of f . The group π0S 1(f) can be viewed as an analogue
of a mapping class group for f -preserved diffeomorphisms of M . The groups
π0∆

1(f) and G(f) encode “combinatorially trivial” and “combinatorially non-
trivial” counterparts of π0S 1(f) respectively. In the paper we compute groups
π0S 1(f), G(f), and π0∆

1(f) for Morse functions on 2-torus T 2.

Анотація. Гомотопійні властивості функцій Морса на поверхнях ви-
вчались багатьма математиками. Зокрема, компоненти зв’язності прос-
тору функцій Морса були описані Х. Цишангом у неопублікованій праці,
С. Матвеєвим у роботі О. Кудрявцевої [6] і В. Шарком [20]. Групи кобор-
дизмів простору функцій Морса були описані К. Ікегамі і О. Саекі [4],
а також Б. Кальмаром [5]. Інший підхід до вивчення деформацій фун-
кцій Морса за допомогою дослідження стабілізаторів і орбіт цих функцій
був запропонований С. Максименком [10, 11, 12, 14, 15] і О. Кудрявце-
вою [7, 8].
Група дифеоморфізмів D(M) діє справа на просторі гладких функцій

C8(M) за таким правилом:
C8(M) ˆ D(M) Ñ C8(M), (f, h) ÞÑ f ˝ h.

Для функції f P C8(M) нехай S(f) = th P D(M) | f ˝ h = fu – стабілі-
затор f і O(f) = tf ˝h | h P D(M)u – орбіта f відносно цієї дії. Наділимо
простори D(M) і C8(M) сильними топологіями Уїтні. Ці топології інду-
кують деякі топології на просторах S(f) і O(f). Нехай також Did(M) та
Sid(f) – зв’язні компоненти тотожнього відображення, а Of (f) – зв’язна
компонента O(f), що містить f . Покладемо S 1(f) = S(f) X Did(M).
Нехай Γf – граф функції f . Тоді будь-який h P S 1(f) індукує гомео-

морфізм графу Γf . Групу таких гомеоморфізмів позначимо через G(f).
Нехай ∆1(f) – підгрупа в S 1(f), що складається із гомеоморфізмів, що
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тривіально діють на графі функції f , а також є ізотопними тотожньо-
му відображенню. С. Максименко досліджував групи π0∆

1(f), а також
фактор-групу G(f) = π0S 1(f)/π0∆

1(f).
Група π0S 1(f) є певним аналогом групи класів відображень для дифе-

оморфізмів, що зберігають функцію. При такій аналогії групи π0∆
1(f) і

G(f) відображають “комбінаторно тривіальну” і “комбінаторно нетриві-
альну” частини S 1(f).
У серії робіт [17, 9, 16, 2] досліджувалась алгебраїчна структура фун-

даментальної групи Of (f) для функцій Морса. Було показано, що вона
може бути обчислена за допомогою гомотопійної інформації про обме-
ження заданої функції f на підповерхні 2-тора, що є дисками та цилін-
драми узгодженими з f . Дана робота присвячена алгебраїчному опису
груп π0S 1(f), π0∆

1(f) і G(f) для функцій Морса на 2-торі.

1. INTRODUCTION
Homotopy properties of Morse functions on surfaces were studied by

many authors. E.g. connected components of the space of Morse functions
were computed in the unpublished paper by H. Zieschang, by S. Matveev
in the paper by E. Kudryavtseva [6], and V. Sharko [20], cobordism groups
of the space of Morse functions on surfaces were described by K. Ikegami
and O. Saeki [4], and B. Kalmar [5]. Homotopy groups of stabilizers and
orbits of Morse functions on surfaces with respect to the action of diffeo-
morphism groups were studied by S. Maksymenko [10, 11, 12, 14, 15] and
E. Kudryavtseva [7, 8]. We will give an overview of these results.
Let M be a smooth compact surface and X be a closed (possible empty)

subset of M . The group D(M,X) of diffeomorphisms fixed on some neigh-
borhood of X acts on the space of smooth functions C8(M) by the rule:
C8(M) ˆ D(M,X) Ñ C8(M), (f, h) ÞÑ f ˝ h. With respect to this action
we denote by

S(f,X) = th P D(M,X) | f ˝ h = fu,

O(f,X) = tf ˝ h | h P D(M,X)u

the stabilizer and the orbit of f P C8(M) respectively. Endow strong Whit-
ney C8-topologies on C8(M) and D(M,X). Then for each f P C8(M)
these topologies induce some topologies on S(f,X) and O(f,X). We de-
note by Did(M,X), Sid(f,X), and Of (f,X) connected components of the
identity map idM of D(M,X), S(f,X), and the component of O(f,X) con-
taining f respectively. If X = ∅ we will omit the symbol “∅ ” from our
notations, i.e. , set D(M) := D(M,∅), S(f) := S(f,∅), O(f) := O(f,∅),
and so on.
By a Morse function f on a M we will mean a smooth function which

satisfies the following conditions:
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‚ all critical points of f are non-degenerate and belong to the interior of
M ;

‚ the function f takes constant values on each boundary component of M .
Notice that if N Ă M is a subsurface whose boundary components are

regular components of some level-sets of a Morse function f : M Ñ R, then
the restriction f |N is a Morse function as well in the sense of the above
definition.

Theorem 1.1. [19, 10, 14, 13]. Let f be a Morse function on a smooth
compact surface M , and X be a closed (possibly empty) subset of M con-
sisting of finitely many connected components of some level-sets of f and
some critical points of f . Then the following statements hold.
(1) The map p : Did(M,X) Ñ O(f,X) defined by p(h) = f ˝ h is a

Serre fibration with the fiber S(f,X). Hence p(Did(M)) = Of (f), and the
restriction p|Did(M) : Did(M) Ñ Of (f,X) is also a Serre fibration with the
fiber S 1(f,X) = S(f) X Did(M,X).
(2) Of (f,X) = Of (f,X Y BM), so πk(Of (f,X)) = πk(Of (f,X Y BM))

for k ě 1.
(3) Suppose that either f has a saddle point or M is a non-orientable

surface. Then Sid(f) is contractible, πkOf (f) = πkM , k ě 3, π2Of (f) = 0,
and for π1Of (f) we have the following short exact sequence of groups:

π1Did(M) � � p1 // π1Of (f)
B1 // // π0S 1(f) 1. (1.1)

Moreover the group p1(π1Did(M)) is contained in the center of π1Of (f).
(4) If χ(M) ă |X|, then Did(M,X) is contractible, πkOf (f,X) = 0 for

k ě 2, and the boundary map

B1 : π1Of (f,X) ÝÑ π0S 1(f,X)

is an isomorphism.
We recall the definition of the map B1. Let ω : [0, 1] Ñ Of (f), ω0 = ω1

be a loop in Of (f) based in f . Since p is a Serre fibration, it follows that
there exists an isotopy h : M ˆ [0, 1] Ñ M such that ωt = f ˝ ht, h0 = id,
and h1 P S 1(f), i.e. , h1 is such that f ˝h1 = f . Then the map B1 is defined
by the formula B([ω]) = [h1] P π0S 1(f).

1Throughout the text injective and surjective maps of groups will be also denoted by
hooked ãÑ and double-headed arrows ↠ respectively.
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1.2. Automorphisms of graphs of functions on surfaces. Let
f : M Ñ R

be a Morse function on a smooth compact oriented surface M and c be a
real number. A connected component C of the level-set f´1(c) is called
critical, if C contains at most one critical point of f , otherwise C is regular.
Let Ξ be a partition of M into connected components of level-sets of f .
It is well known that the quotient-space Γf = M/Ξ has a structure of a
1-dimensional CW complex called the graph of f , or Kronrod-Reeb graph of
f . Let also pf : M Ñ Γf be a projection map. Then f can be represented
as the composition:

f = pf ˝ pf : M
pf // Γf

pf // R.

Denote by Aut(Γf ) the group of homeomorphisms of the graph Γf . Note
that each h P S(f,X) preserves level-sets of f . Hence, h induces the home-
omorphism ρ(h) of Γf such that the following diagram

M
pf //

h
��

Γf

pf //

ρ(h)

��

R

M
pf // Γf

pf // R

commutes, and the correspondence h ÞÑ ρ(h) is a homomorphism
ρ : S(f,X) Ñ Aut(Γf ).

One can check that the image ρ(S(f,X)) is a finite subgroup in Aut(Γf ).
The image ρ(S 1(f,X)) in Aut(Γf ) will be denoted by G(f,X).
Let ∆(f,X) be the normal subgroup of S(f,X) consisting of diffeomor-

phisms which leave invariant every connected component of each level set
of f , and ∆1(f,X) be the following intersection ∆(f,X)XDid(M,X). It is
known that π0∆1(f,X) is a free abelian group and Kerρ = π0∆

1(f,X). So
the following sequence of groups is exact

π0∆
1(f,X) � � j0 // π0S 1(f,X)

ρ // // G(f,X), (1.2)

see [15, Section 4]. From [12, Theorem 5.2], we have another short exact
sequence

π1Did(M,X) ˆ π0∆
1(f,X) � � ι1 // π1Of (f,X)

ρ˝B1 // // G(f,X), (1.3)

in which ι1 is defined as follows. Let α P π1Did(M,X) be an element
represented by some loop tht : M Ñ MutP[0,1] in Did(M,X) such that
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h0 = h1 = idM , and ϕ P ∆1(f,X) = ∆(f) X Did(M,X). Fix any isotopy
tϕt : M Ñ MutP[0,1] between idM = ϕ0 and ϕ = ϕ1. Then

ι1(α, ϕ) = [f ˝ ht ˝ ϕt] P π1Of (f,X).

1.3. Main diagram. Thus for a given Morse function f on a smooth com-
pact oriented surface M we considered several spaces associated with f . If
M ‰ S2, then all non-trivial homotopy information is encoded in the fol-
lowing commutative diagram:

π1Did(M) ˆ π0∆
1(f)

pr2 // //

pr1
����

� v

ι1

((RR
RRR

RRR
RRR

RR
π0∆

1(f)� _

j0
��

π1Did(M) �
� p1 // π1Of (f)

B1 // //

ρ˝B1 %% %%LL
LLL

LLL
LL

π0S 1(f)

ρ
����

G(f),

(1.4)

where pr1 and pr2 are projections onto the first and the second factor.
In diagram (1.4) horizontal, vertical and diagonal sequences coincide with
sequences (1.1), (1.2), and (1.3) respectively.
Let

A1
� � i1 // A2

p1 // // A3 , (1.5)

B1
� � i2 // B2

p2 // // B3 (1.6)

be two exact sequences of groups. Recall that sequences (1.5) and (1.6) are
isomorphic if there exist isomorphisms ϕ = tϕi : Ai Ñ Bi, i = 1, 2, 3u such
that the following diagram commutes

A1
� � i1 //

ϕ1

��

A2
p1 // //

ϕ2

��

A3

ϕ3

��
B1

� � i2 // B2
p2 // // B3.

Similarly one can define the notion of an isomorphism for commutative
diagrams.
The main aim of the paper is to describe diagram (1.4) for Morse func-

tions on 2-torus up to an isomorphism.

1.4. Acknowledgments. The author is grateful to Sergiy Maksymenko
for useful discussions.
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1.5. Structure of the paper. Section 2 collects definitions of wreath
products, which we need to state our main result, Theorem 3.2. We re-
call some known results about Morse functions on 2-torus and their graphs
in Section 4, and the fundamental groups of such functions is described
in Section 6. Section 5 contains some facts needed for the proofs of our
results, and we will prove Theorem 3.2 in Sections 7 and 8.

2. WREATH PRODUCTS
To state our results we need special kinds of wreath products of groups

with cyclic groups which we describe below. Let G be a group and n,m ě 1
be integers. We will consider the following wreath products:

‚ G ≀n Z := Gn ¸α Z,
‚ G ≀ Zn := Gn ¸β Zn,
‚ G ≀n,m Z2 := Gnm ¸γ Z2,
‚ G ≀ (Zn ˆ Zm) := Gnm ¸δ (Zn ˆ Zm),

where α : Gn ˆZ Ñ Gn and β : GˆZn Ñ Gn correspond respectively to a
non-effective Z-action and an effective Zn-action on Gn by cyclic shifts of
coordinates defined by formulas:(

(gi)
n´1
i=0 , a

) α
ÞÝÑ (gi+a)

n´1
i=0 ,

(
(gi)

n´1
i=0 , b

) β
ÞÝÑ (gi+b)

n´1
i=0 ,

where all indexes are taken modulo n, gi P G, a P Z, b P Zn. Similarly
γ : Gnm ˆ Z2 Ñ Gnm and δ : Gnm ˆ (Zn ˆ Zm) Ñ Gnm correspond
respectively to a non-effective Z2-action and an effective Zn ˆZm-action on
Gnm by cyclic shifts of the corresponding coordinates defined by formulas(

(gij)
n´1,m´1
i,j=0 , (a, b)

) γ
ÞÝÑ (gi+a,j+b)

n´1,m´1
i,j=0 ,(

(gij)
n´1,m´1
i,j=0 , (a1, b1)

) δ
ÞÝÑ (gi+a1,j+b1)n´1,m´1

i,j=0 ,

where the indexes i and j takes modulo n and m respectively, (a, b) P Z2,
(a1, b1) P Zn ˆ Zm.
So G ≀nZ and G ≀Zn are direct products of sets Gn ˆZ and Gn ˆZn with

the following multiplications
(g, a) ¨ (g1, a1) = (α(g, a1)g1, a+ a1), (g, a) ¨ (g1, a1) = (β(g, b1)g1, b+ b1),

for g, g1 P Gn, a, a1 P Z, and b, b1 P Zn. Similarly G ≀n,mZ2 and G ≀(Zn ˆZm)
are direct products of sets Gnm ˆZ2 and Gnm ˆZn ˆZm respectively with
multiplications

(g, (a, b)) ¨ (g1, (a1, b1)) =
(
γ(g, a1, b1)g1, (a+ a1, b+ b1)

)
,

(g, (c, d)) ¨ (g1, (c1, d1)) =
(
γ(g, c1, d1)g1, (c+ c1, d+ d1)

)
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for g, g1 P Gnm, a, a1b, b1 P Z, c, c1 P Zn, and d, d1 P Zm.
The general definition of wreath product and its properties the reader

can find in [18].

3. MAIN RESULT
Let f be a Morse function on T 2, Γf be its graph, and pf : T 2 Ñ Γf be

the projection map induced by f .

Lemma 3.1. The map p˚
f : π1T

2 Ñ π1Γf induced by pf is an epimorphism
with a nonzero kernel. Hence the graph of f is either a tree, or has a unique
circuit.
Proof. Let x P T 2 be an arbitrary point. Note that π1(Γf , pf (x)) = Fk,
where Fk is a free group of some rank k equals the number of independent
cycles in Γf , and π1(T

2, x) is isomorphic to Z2. It is easy to see that there
exists a map s : (Γf , pf (x)) Ñ (T 2, x) such that the composition pf ˝ s
is homotopic to the identity map idΓf

relatively base point. Then the
composition

π1(Γf , pf (x))
s˚ // π1(T

2, x)
p˚
f // π1(Γf , pf (x))

is the identity isomorphism.
Moreover p˚

f is a surjective map and π1(Γf , pf (x)) = Fk is a subgroup of
the group π1(T

2, x) = Z2. Since π1(T
2, x) is commutative, it follows that

Fk as a subgroup of π1(T 2, x) is also a commutative group. This is possible
only when k = 0 or k = 1. So Γf is either a tree if k = 0, or Γf has a
unique circuit if k = 1. In both of these cases p˚

f has a nonzero kernel. □

Denote byF0 the class of Morse functions on T 2 whose graphs are trees, and
by F1 the class of Morse functions on T 2 whose graphs contain circuits1.
Our main result is the following theorem.

Theorem 3.2. Let f be a Morse function on T 2 and Γf be its graph.
(1) Assume that f belongs to F0. Then there exists a set of mutually

disjoint 2-disks D = tDiu
r
i=1 Ă T 2 for some r ě 1 such that each restriction

f |Di : Di Ñ R, i = 1, . . . , r, is also a Morse function, and the diagram (1.4)
is isomorphic to

1Thus the index i in Fi refers to the rank of homology group H1(Γf ,Z).
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π1Did(T 2) ˆ (∆D)
nmn pr2 // //

pr1
����

� v

ι1

))SSS
SSSS

SSSS
SSS

(∆D)
nmn
� _

j0
��

π1Did(T 2) �
� p1 // SD ≀n,nm Z2 B1 // //

B1˝ρ (( ((QQ
QQQ

QQQ
QQQ

QQ
SD ≀ (Zn ˆ Znm)

ρ
����

GD ≀ (Zn ˆ Znm)

(3.1)

for some n,m P N, where

∆D=
r

ź

i=1

π0∆
1(f |Di , BDi), SD=

r
ź

i=1

π0S 1(f |Di , BDi), GD=
r

ź

i=1

G(f |Di).

(2) Assume that f belongs to F1. Then there exists a set of mutually
disjoint 2-disks Y = tYiju

j=0,...,ci
i=0,...,k Ă T 2 for certain k, ci P N, and mi P N,

i = 0, . . . , k ´ 1, such that diagram (1.4) is isomorphic to

π1Did(T 2) ˆ (∆n
Y)/H

pr2 // //

pr1
����

� u

ι1

((QQ
QQQ

QQQ
QQQ

QQ
(∆n

Y)/H� _

j0
��

π1Did(T 2) �
� p1 // SY ≀n Z B1 // //

B1˝ρ && &&NN
NNN

NNN
NNN

(SY ≀ Zn)/H

ρ
�� ��

GY ≀ Zn,

for some n P N, where

∆Y =
k

ź

i=1

((
ci

ź

j=1

∆Yij )
mi ˆ miZ), ∆Yij = π0∆

1(f |Yij , BYij),

SY =
k

ź

i=1

((
ci

ź

j=1

SYij ) ≀mi Z), SYij = π0S 1(f |Yij , BYij),

GY =
k

ź

i=1

((
ci

ź

j=1

GYij ) ≀ Zmi), GYij = G(f |Yij , BYij),

and the group H is a normal subgroup of ∆n
Y isomorphic to Z and generated

by the element
((E1,m1, E2,m2, . . . , Ek,mk), . . . , (E1,m1, E2,m2, . . . , Ek,mk)
loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

n

), (3.2)
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where Ei is the unit of the group (
ści

j=1∆Yij )
mi, i = 0, 1 . . . , k. The group

H is contained in the center of SY ≀n Z via j0(h) = (h, 0) for h P H.
Remark 3.3. (1) It is known that the inclusion T 2 ãÑ Did(T 2) is a
homotopy equivalence, see [1, 3]. So, the group π1Did(T 2) is isomorphic to
Z2.
(2) S. Maksymenko showed that the group π1Of (f) is a subgroup of the

braid group of T 2, see for example [15, Theorem 1.1]. The element (3.2)
can be regarded as a certain analogue of the Garside element in this braid
group.
(3) In a series of papers [17, 9, 16, 2] S. Maksymenko and the author

described groups π1Of (f) for functions on 2-torus. We shortly review these
results in Section 6.
(4) Since the structure of groups π1Did(T 2) and π1Of (f) are known, it

follows that for description of diagram (1.4) we need to find a structure of
groups π0S 1(f), G(f), and π0∆

1(f).

4. FUNCTIONS ON 2-TORUS, THEIR GRAPHS, AND HOMOTOPY PROPERTIES
In this section we give a short overview of known results about graphs of

smooth functions on 2-torus, see [9, 17, 16, 2]. Let f be a Morse function
on T 2, Γf be its graph, and pf : T 2 Ñ Γf be the projection map induced
by f .

Case 1: Functions from F0. The following lemma holds.

Lemma 4.1. [9, Proposition 1]. Let f P F0. Then there exits a unique
vertex v in Γf such that each component of the complement T 2zp´1

f (v) is
an open 2-disk. Such a vertex v of Γf is called special. □
Let v be a special vertex of Γf , Gv be the stabilizer of v with respect to

the action of the group G(f) acting on Γf . Then a uniqueness of the special
vertex v implies that Gv coincides with G(f). Let st(v) be a Gv-invariant
connected neighborhood of v containing no other vertices of Γf . The set
Gloc

v = tg|st(v) | g P Gvu consisting of restrictions of elements of Gv onto
st(v) is a subgroup of Aut(st(v)). We will call Gloc

v the local stabilizer of v.
Let also r : Gv Ñ Gloc

v be the restriction map to st(v).

Lemma 4.2. [2, Theorem 2.5]. Let f P F0 and v be the special vertex of
Γf .
(1) Then Gloc

v is isomorphic to Zn ˆ Znm for some n,m P N.
(2) There exists a section s : Gloc

v Ñ S 1(f) of the map r ˝ ρ such that
s(Gloc

v ) freely acts on T 2, so the map q : T 2 Ñ T 2/s(Gloc
v ) is a covering
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projection. Moreover the space of orbits T 2/s(Gloc
v ) is also diffeomorphic

to T 2.
Remark 4.3. (i) Throughout the paper by Gloc

v -action on T 2 we will
mean its action via the section s from (2). So we will write T 2/Gloc

v instead
of T 2/s(Gloc

v ).
(ii) Let V = p´1

f (v) be a critical component of a level set of f which
corresponds to the special vertex v. Since Gloc

v freely acts on T 2, it follows
that connected components of T 2zp´1

f (v) can be enumerated by three in-
dexes Dijk, i = 1, 2, . . . , r, j = 0, . . . , n ´ 1, and k = 0, . . . , nm ´ 1. So, if
γ = (a, b) P Gloc

v = Zn ˆ Znm then
γ(Dijk) = Di, j+a mod n, k+b mod nm.

(iii) The set D = tDi00uri=1 from (1) of Theorem 3.2 will be called a fun-
damental set of this Gloc

v -action. Numbers n,m and r in (1) of Theorem 3.2
are also determined from (i).
Case 2: Functions from F1. Let f P F1, Θ be a unique simple cycle in
Γf , z P Θ be a point belonging to some edge of Θ, and C0 = p´1

f (z) Ă T 2

be the corresponding regular component of some level set f´1(c), c P R.
Notice that f´1(c) consists of finitely many, say n, connected components

and is invariant under the action of any h P S(f). Let
C = th(C0) | h P S 1(f)u

be the set of all images of C0 under the action of elements from S 1(f). Evi-
dently, the curves from C are pairwise disjoint. Since C0 does not separate
T 2, it follows that each Ci does not separate T 2 as well. Two such curves
will be called parallel, and the set C will be called parallel family on T 2.
We can also assume that they are cyclically enumerated along T 2, so

that Ci and Ci+1 bound a cylinder Qi such that the interior of Qi does not
intersect C, where all indexes are taken modulo n. The number n from (2)
of Theorem 3.2 is the number of curves in C and we will call it the cyclic
index of f . For other details see [16].

5. PRELIMINARIES
5.1. Homotopy properties of Morse functions on cylinder. The fol-
lowing lemma holds.

Lemma 5.2. [15, Theorem 5.8, Lemma 5.1 III (a)]. Let f be a Morse
function on cylinder Q = S1 ˆ [0, 1]. Then there exists a family of mutually
disjoint 2-disks Y = tYiju

j=1,...,ci
i=1,...,k Ă Q for some k, ci P N, and mi P N,

i = 1, . . . , k such that
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(1) f |Yij is also a Morse function for each j = 1, . . . , ci, i = 1, . . . , k;
(2) there exists an isomorphism ζ = (ζ1, ζ2, ζ3) of the following short

exact sequences:

π0∆
1(f) �

� j0 //

– ζ1
��

π0S 1(f)
ρ // //

– ζ2
��

G(f)

– ζ3
��

∆Y
� � j0 // SY

ρ // // GY,

where the first row is a sequence (1.2) with X = ∅, and

∆Y =
k

ź

i=1

(( ci
ź

j=1

∆Yij

)mi
ˆ miZ

)
, ∆Yij = π0∆

1(f |Yij , BYij),

SY =
k

ź

i=1

(( ci
ź

j=1

SYij

)
≀mi Z

)
, SYij = π0S 1(f |Yij , BYij),

GY =
k

ź

i=1

(( ci
ź

j=1

GYij

)
≀Zmi

)
, GYij = G(f |Yij , BYij).

(3) The kernel of the homomorphism π0S 1(f, BQ) Ñ π0S 1(f) induced by
the inclusion is isomorphic to Z and is generated by the isotopy class of
τ0 ˝τ´1

1 , where τi P S1(f) is a Dehn twist along S1ˆtiu, i = 0, 1. Moreover,
in the notation of (2) [τ0 ˝ τ´1

1 ] corresponds to the element

(E1,m1, . . . , Ek,mk) P

k
ź

i=1

(( ci
ź

j=1

∆Yij

)mi
ˆ miZ

)
, (5.1)

where Ei is the unit of (
ści

j=1∆Yij )
mi, i = 1, . . . , k, [15, Lemma 5.1 III (a)].

5.3. Dehn twists and slides. Let α, β : [´1, 1] Ñ [0, 1] be two smooth
functions such that α = 0 on [´1,´1/2] and α = 1 on [1/2, 1], while β = 0
on [´1,´2/3] Y [2/3, 1], and β = 1 on [´1/3, 1/3].
Let Q = S1 ˆ [´1, 1] be a cylinder and C = S1 ˆ 0. Define the following

two diffeomorphisms of Q by the formulas
τ(z, t) = (zeα(t), t), θ(z, t) = (zeβ(t), t),

for (z, t) P S1 ˆ [´1, 1]. The diffeomorphisms τ and θ are called a Dehn
twist and a slide along the curve C respectively. Note that τ is fixed on
some neighborhood of BQ and θ is fixed on some neighborhood of C Y BQ.
Let M be a smooth surface and C Ă M be a simple closed curve. Sup-

pose that C is a two-sided curve, i.e., C has a regular neighborhood W
diffeomorphic to a cylinder Q. Fix any diffeomorphism ϕ : Q Ñ W such
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that ϕ(S1 ˆ 0) = C. Since τ is fixed on some neighborhood of BQ, it is
easy to see that ϕ ˝ τ ˝ ϕ´1 : W Ñ W extends by the identity to a unique
diffeomorphism τ of M . Any diffeomorphism h : M Ñ M isotopic to τ or
τ´1 will be called a Dehn twist along C.
Similarly ϕ ˝ θ ˝ ϕ´1 : W Ñ W extends by the identity map to the

diffeomorphism θ of M . Any diffeomorphism h : M Ñ M fixed on some
neighborhood of C supported on some cylindrical neighborhood W of C
and isotopic to θ or θ´1 relatively to some neighborhood of C Y MzQ will
be called a slide along C. For more details see [16].

5.4. Groups π0∆
1(f) and their special subgroups. Let f be a Morse

function from F1 with cyclic index n, so there exists an S 1(f)-invariant
family

C = tCi | i = 0, . . . , n ´ 1u

of connected components of the same level set of f and neither of those
curves separate T 2, i = 0, . . . , n ´ 1. We let denote by Qi the cylinder
bounded by curves Ci and Ci+1 mod n.
A neighborhood V of C P C will be called f -adapted if
‚ V is diffeomorphic to S1 ˆ [0, 1] via a diffeomorphism, say ϕ, such that
‚ ϕ´1(S1ˆttu) is a connected component of some level set of f , t P [0, 1].

In particular, V does not contain critical points of f . Fix an f -adapted
neighborhood Vi of Ci, i = 0, . . . , n ´ 1, so that

– Vi X Vj = ∅ for i ­= j;
– for each i, j there exists h P S 1(f) such that h(Vi) = Vj , so the union

V =
n´1
ď

i=0

Vi

is S 1(f)-invariant.
Notice that by definition the group ∆1(f,V) consists of diffeomorphisms

of T 2 which are isotopic to idT 2 , fixed on an f -adapted neighborhood V of
C, and inducing trivial homeomorphisms of Γf . Let j : ∆1(f,V) Ñ ∆1(f) be
the natural inclusion. It is known and is easy to see that the homomorphism

j0 : π0∆
1(f,V) Ñ π0∆(f)

induced by j is an epimorphism, see [15, Lemma 5.1]. Let also Wi be an
f -adapted neighborhood of Ci satisfying Vi Ă IntWi for i = 0, 1 . . . , n ´ 1.
Put W =

Ťn´1
i=0 Wi, Then, [15, Corollary 7.2], the natural inclusion

∆1(f,V) ãÑ ∆1(f,W)

is the homotopy equivalence and groups π0∆1(f) and π0∆1(f,V) are abelian
groups.
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Recall that a vector field F on a smooth oriented surface M is called
Hamiltonian-like for a Morse function f if the following conditions hold:

‚ singular points of F correspond to critical points of f ,
‚ f is constant along F ,
‚ for every critical point z of f there exists a local coordinate system
(x, y) such that z = (0, 0), f(x, y) = ˘x2 ˘ y2 + f(z) near z, and in
these coordinates F has the form F (x, y) = ´f 1

y
B

Bx + f 1
x

B
By .

By [10, Lemma 5.1] for every Morse function f : M Ñ R on a smooth
oriented surface M there exists a Hamiltonian-like vector field.
Fix a Hamiltonian-like vector field F for the given function Morse func-

tion f on T 2, and let F be the flow of F . ThenW is F-invariant and consists
of periodic orbits. Therefore one can assume that periods of all trajectories
of F in W equals 1.
Let θi : T 2 Ñ T 2 be a slide along Ci supported inWizVi, i = 0, . . . , n´1,

and
θ = θ0 ˝ θ1 ˝ . . . ˝ θn´1.

Then, [16, Lemma 5.2], there exists a smooth function σ : T 2 Ñ R such
that

‚ σ is constant along trajectories of F,
‚ σ = 1 on V, σ = 0 on T 2zW, and
‚ θ = Fσ.

Then for k P Z we have θk = Fkσ. From this definition it immediately
follows that θ belongs to ∆1(f,V). A free abelian subgroup of π0∆1(f,V)
generated by θ will be denoted by xθy. The following theorem is our main
result of this section.

Theorem 5.5. For f P F1 the following statements hold true.
1) Kerj0 – xθy – Z. In other words, each h P ∆1(f,V) is isotopic to θk(h)

for some k(h) P Z relatively to V whenever [h] P Kerj0.
2) The following exact sequence of abelian groups

xθy
� � // π0∆

1(f,V) j0 // π0∆
1(f) (5.2)

splits. In particular, there is an isomorphism

π0∆
1(f,V) – xθy ˆ π0∆

1(f).

Proof. 1) Let h P ∆1(f,V). We have to show that if [h] P Kerj0, then h is
isotopic to θk(h) relatively V for some k(h) P Z.
Recall that the identity component of ∆1(f) is Sid(f), see [15, Lemma

4.1]. Hence if h P ∆1(f,V) is such that [h] P Kerj0, then h P Sid(f), and
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by [15, Lemma 6.1] there exists a unique smooth function α : T 2 Ñ R such
that h = Fα.
We claim that such h admits some “simplification” on T 2zW, i.e., h can

be deformed relatively V to a diffeomorphism h1 such that [h1] P Ker(j0)
and h1 is also fixed on T 2zW. Indeed, fix any smooth function δ : T 2 Ñ R
satisfying

‚ δ|V = 0, δ|T 2zW = 1,
‚ δ is constant along trajectories of F,

and define the following homotopy Ht : T 2 Ñ T 2, t P [0, 1], by the formula
Ht(h) = F´1

tδα ˝ h.

By [15, Lemma 6.1] a family tHtu is in fact an isotopy between H0 = h,
h1 := H1(h) = F´1

δα ˝h, and each diffeomorphism Ht(h) belongs to ∆1(f,V).
In particular, the isotopy classes of h and h1 in π0∆

1(f,V) coincide, and h1

is fixed on T 2zW.
So we can redenote h1 with h and additionally assume further that h is

fixed on T 2zW. The restriction of α and h onto Vi, i = 0, . . . , n ´ 1, will
also be denoted by αi and hi respectively. By assumptions h is fixed on V,
that is

hi(x) = Fαi(x)(x) = x, x P Vi.

Since the period of trajectories of F on W equals 1, it follows that αi takes
an integer value, say ki(h) P Z, depending on h for each x P Vi.
We claim that in fact αi takes the same value k P Z on each Vi, so all

of those numbers ki(h) must coincide. Indeed, recall that h|Qi is isotopic
relatively V X Qi to a Dehn twist τai supported in V X Qi, where

ai = α(Ci+1) ´ α(Ci) = ki+1(h) ´ ki(h), i = 0, . . . , n ´ 1.

However, as h P ∆1(f,V), it follows that h|Qi , i = 0, . . . , n ´ 1, is isotopic
to idQi = τ0 relatively to V X Qi, that is

ki+1(h) ´ ki(h) = ai = 0,

and so ki+1(h) = ki(h) for each i = 0, . . . , n ´ 1. Thus we can denote the
common value of all ki(h) simply by k(h).
Define now an isotopy Ht(h) : T 2 Ñ T 2 between h = Fα and θk = Fk(h)σ

by the formula
Ht(h) = F(1´t)α+tk(h)σ, t P [0, 1].

Then Ht(h) is fixed on V for all t P [0, 1] and so each h with [h] P Kerj0 is
isotopic to θk(h) relatively to V. In other words, Kerj0 Ă xθy.
The inverse inclusion is easy xθy Ă Kerj0, and so Kerj0 = xθy is a free

abelian group generated by the element θ.
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2) Now it follows from 1) and surjectivity of j0 that we have a short exact
sequence (5.2):

xθy
� � // π0∆

1(f,V) j0 // // π0∆
1(f).

Moreover, [10], it consists of abelian groups and the group π0∆
1(f) is a free

abelian. Therefore the above sequence splits, i.e., there is an isomorphism
π0∆

1(f,V) – π0∆
1(f) ˆ xθy. □

6. ORBITS OF MORSE FUNCTIONS ON 2-TORUS
The following theorem describes the fundamental groups of orbits of

Morse functions on 2-torus. We showed that they can be computed using
zero homotopy groups of stabilizers of restrictions of the given function onto
subsurfaces of T 2 being 2-disks and cylinders.

Theorem 6.1. [17, 9, 16, 2]. Let f be a Morse function on T 2, and Γf be
its graph.
(1) Assume that f belongs toF0 and Gloc

v – ZnˆZnm for some n,m P N.
Then there exists a set of mutually disjoint 2-disks D = tDiu

r
i=1 Ă T 2 for

some r P N which is a fundamental set of the free Gloc
v -action on T 2 such

that the restriction f |Di, i = 1, . . . , r, is a Morse function, and there is an
isomorphism

ξ1 : SD ≀n,nm Z2 Ñ π1Of (f), (6.1)

where SD :=
r

ś

i=1
π0S 1(f |Di , BDi). Moreover r is the number of orbits of free

Gloc
v -action on T 2.
(2) Assume that f belongs to F1 and has a cyclic index n P N. Then

there exists a cylinder Q Ă T 2 such that f |Q is also a Morse function and
we have an isomorphism

ξ2 : SQ ≀n Z Ñ π1Of (f), (6.2)
where SQ := π0S 1(f |Q, BQ).
6.2. Strategy of the proof of Theorem 3.2. First we recall explicit
definitions of isomorphisms

ξ1 : SD ≀n,nm Z2 Ñ π1Of (f), ξ2 : SQ ≀n Z Ñ π1Of (f)

from Theorem 6.1 in Subsections 7.1 and 8.1 respectively. Since groups
π0S 1(f) and G(f) are quotient-groups

π0S 1(f) – π1Of (f)/π1Did(T 2),

G(f) – π1Of (f)/(π1Did(T 2) ˆ π0∆
1(f)),
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see diagram (1.4), it follows that in order to describe them and the diagram
(1.4) we need to characterize images of π1Did(T 2) and π0∆

1(f) with respect
to the maps ξ´1

1 and ξ´1
2 and take the corresponding quotient-groups. This

will be done in Subsection 7.2 and Subsection 8.2.

7. PROOF OF (1) OF THEOREM 3.2
Due to our strategy, see Subsection 6.2, first we give the explicit descrip-

tion of the isomorphism ξ1 : SD ≀n,nm Z2 Ñ π1Of (f).

7.1. Isomorphism from (1) of Theorem 6.1. Let f be a Morse function
on T 2 = R2/Z2 such that its graph Γf is a tree, v be the special vertex of
Γf , and Gloc

v = Zn ˆ Znm be the local stabilizer of v. Then the free action
of Zn ˆ Znm on T 2 can be given by:

κ(a,b)(x, y) =
(
x+

a

n
mod 1, y +

b

nm
mod 1

)
,

for (a, b) P Zn ˆ Znm and (x, y) P T 2, and the quotient space T 2/Gloc
v is

diffeomorphic to T 2 = R2/Z2, so that the quotient map q : T 2 Ñ T 2/Gloc
v

is given by the formula
q(x, y) = (nx mod 1, nmy mod 1).

Let y be a point in T 2, and z = q(y) P T 2/Gloc
v . Then we obtain the

following commutative diagram with exact rows

π1(T
2, y) �

� q1 // π1(T
2/Gloc

v , z)
B1 // // Gloc

v

Z2 � � q1 // Z2 B // // Zn ˆ Znm,

(7.1)

where the maps q1 and B are given as follows
q1(λ, µ) = (nλ, nmµ), B(x, y) = (x mod n, y mod nm).

Let L,M : T 2 ˆ R Ñ T 2 be smooth flows on T 2 defined by

L(x, y, t) =
(
x+

t

n
mod 1, y, t

)
, M(x, y, t) =

(
x, y +

t

nm
mod 1, t

)
.

Then they commute each with other, and
La(x, y) = κ(a,0)(x, y), Mb(x, y) = κ(0,b)(x, y),

for a, b P R. Moreover, Ln = Mnm = idT 2 , and the restrictions
L : T 2 ˆ [0, n] Ñ T 2, M : T 2 ˆ [0, nm] Ñ T 2

can be regarded as loops in Did(T 2) constituting also a basis (1, 0), (0, 1)
of π1Did(T 2) – Z2.
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Then, [2], the isomorphism ξ1 : SD ≀n,nm Z2 Ñ π1Of (f), see (6.1), can be
defined as follows. Let (

thijku, (a, b)
)

P SD ≀n,nm Z2,

where hijk P S 1(f |Di00 , BDi00), (a, b) P Z2, i = 1, . . . , r, j = 0, . . . , n ´ 1,
k = 0, . . . , nm´1. For each triple (i, j, k) fix any isotopy htijk : Di00 Ñ Di00,
t P [0, 1] between h0ijk = idDi00 and h1ijk = hijk relatively some neighborhood
of BDi00. Then

ξ1
(
thijku, (a, b)

)
= [tf ˝ htu], (7.2)

where ht : T 2 Ñ T 2, t P [0, 1], is given by the formula

ht(x) =

$

&

%

tMk+ bt
nm

˝ Lj+at
n

˝ htijk ˝ L´1
j ˝ M´1

k (x)uijk, x P Dijk,

M bt
nm

˝ Lat
n
(x), x P N,

(7.3)

Dijk is a 2-disk defined in (ii) of Remark 4.3, and N is a regular neigh-
borhood of the critical level-set V = p´1

f (v) containing no other critical
points.

7.2. Images of π1Did(T 2) and π0∆
1(f) in SD ≀n,nm Z2. The following

lemma describes the images of the groups π1Did(T 2) and π0∆
1(f) with

respect to the map ξ´1
1 .

Lemma 7.3. (1) Let Zn,0 = (e, . . . , e
loomoon

nmn

, n, 0) and Z0,nm = (e, . . . , e
loomoon

nmn

, 0, nm)

be elements from SD ≀n,nm Z2, where e is the unit of SD. Then
p1(L) = ξ1(Zn,0), p1(M) = ξ1(Z0,nm).

(2) The isomorphism ξ1 induces an isomorphism
ξ1|∆nmn

D
: (∆nmn

D , 0, 0) Ñ ι1(π0∆
1(f)).

Proof. (1) Indeed, ξ1(Zn,0) is a loop f ˝ht, where ht is given by (7.3) with
a = 1 and b = 0. Then by (7.3) the isotopy h has the form ht = Lt.
The case of p1(M) can be checked similarly and we leave this verification

to the reader. So we have p1(xLy) = ξ1(xZn,0y) and p1(xMy) = ξ1(xZ0,nmy).
(2) Let ι : π0∆

1(f) Ñ π1Of (f) be the restriction of ι1 onto π0∆
1(f).

We need to show that ξ1 isomorphically maps the subgroup (∆nmn
D , 0, 0)

of SD ≀n,nm Z2 onto ι(π0∆
1(f)). Obviously, an isomorphism ξ1 induces a

monomorphism ξ1|∆nmn
D

: ∆nmn
D Ñ ι1(π0∆

1(f)). It remains to show that
ξ1|∆nmn

D
is an epimorphism.

Let τ be a Dehn twist supported on some 2-disk
D P tDi,j,kui=1,...,r, j=0,...,n´1, k=0,...,nm´1,
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so it isotopy class [τ ] is a free generator of a free abelian group π0∆
1(f).

Fix an isotopy τ t : T 2 Ñ T 2 between τ1 = τ and τ0 = idT 2 . The image
ι([τ ]) is given by the class of the loop [f ˝τ t]. It follows from (7.3) that there
exist a diffeomorphism h̃ of D and an isotopy h̃t : D Ñ D between h̃1 = h̃
and h̃0 = idD such that ξ1(t[h̃]u, 0, 0) = [f ˝τ t]. Also we get from (7.3) that
h̃ is conjugate to τ |D, and so h̃ is a Dehn twist. Hence h̃ belongs to ∆nmn

D .
Thus ξ1|∆nmn

D
is an isomorphism. □

7.4. Final remarks to the proof of (1) of Theorem 3.2. Notice that
by Diagram (1.4):

π0S 1(f) – π1Of (f)/π1Did(T 2), G(f) – π0S 1(f)/π0∆
1(f)

The images of π1Did(T 2) and π0∆
1(f) in π1Of (f) are described in Subsec-

tion 7.2. Then one easily proves that ξ1 induces the following isomorphisms
π0S 1(f) – SD ≀ (Zn ˆ Znm), G(f) – GD ≀ (Zn ˆ Znm),

as well as isomorphism of diagrams from (1) of Theorem 3.2.

8. PROOF OF (2) OF THEOREM 3.2
First we recall the definition of the isomorphism ξ2 : SQ ≀nZ Ñ π1Of (f).

8.1. Isomorphism from (2) of Theorem 6.1. Let f be a Morse function
from F1 with a cyclic index n and circuit Θ in the graph Γf . As curves
from C are “parallel”, one can assume that the following conditions hold:
(a) Ci =

i
n ˆ S1 Ă R2/Z2 = T 2;

(b) there exists ε ě 0 such that for all t P ( i
n ´ ε, i

n + ε) the curve t ˆ S1

is a regular connected component of some level set of f .
Let L,M : T 2 ˆ R Ñ T 2 be two flows defined by formulas:

Lt(x, y) = (x+ t mod 1, y), Mt(x, y) = (x, y + t mod 1),

x P C 1, y P C0, and t P R.
Denote by Q the cylinder bounded by C0 and C1. Then the isomorphism

ξ2 : SQ ≀n Z Ñ π1Of (f) can be defined as follows, [16, Section 8]. Let
(h1, . . . , hn; a) P SQ ≀n Z,

where hi P SQ, i = 0, . . . , n, and a P Z. Fix any isotopy hti between h0i = idQ
and h1i = hi. Then

ξ2(h
t
1, . . . , h

t
n; a) = [f ˝ ht], (8.1)

where ht is defined by the formula
ht(x) = tLi+at

n
˝ hti ˝ L´1

i (x)ui=0,...,n, x P Qi. (8.2)
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8.2. Images of π1Did(T 2) and π0∆
1(f) in SQ ≀n Z. The following lemma

easily follows from the definition of the isomorphism ξ2 similarly to (1) of
Lemma 7.3.

Lemma 8.3. Let Z = (e1, . . . , e1
looomooon

n

, n) be the element from SQ ≀n Z, where e1

is the unit of SQ. Then p1(L) = ξ2(Z). □
The image of another generator M in π1Of (f) is “invisible” in our de-

scription of the group π1Of (f) via SQ ≀n Z, however in [16, Theorem 6] we
showed that p1(M) in π1Of (f) is given by [f ˝θ], where θ = θ0 ˝ . . .˝θn´1 is
the generator of H = xθy, and θi is a slide along Ci, see Section 5.3. Then
by Theorem 5.5 groups π0∆1(f) ˆ xMy and π0∆

1(f, C) are isomorphic as
subgroups of π1Of (f). So π0∆

1(f) – π0∆
1(f, C)/H.

Lemma 8.4. The isomorphism ξ2 induces an isomorphism

ξ2|∆n
Q
: (∆n

Q, 0) Ñ ι1(π0∆
1(f, C)),

where ∆Q = π0∆
1(f |Q, BQ). So π0∆

1(f) is isomorphic to ∆n
Q/H.

Proof. Obviously, the isomorphism ξ2 induces a monomorphism ξ2|∆n
Q
.

Then τ P ∆1(f, C) be a Dehn twist supported in Q P tQiui=0,...,n´1, such
that its isotopy class [τ ] is one of free generators of the free abelian group
π0∆

1(f, C). Fix an isotopy τ t : T 2 Ñ T 2 such that τ1 = τ and τ0 = id.
Then ι([τ ]) = [f ˝ τ t]. From (8.1) there exists a diffeomorphism h̃ : Q Ñ Q

and an isotopy h̃t : Q Ñ Q between h̃1 = h̃ and h̃0 = idQ such that
ξ2([h̃], 0) = [f ˝ τ t]. By (8.2) h̃ is conjugate to τQ, then h̃ is also a Dehn
twist. Hence h̃ belongs to ∆n

Q. So ξ2|∆n
Q
is an isomorphism, and hence

π0∆
1(f) is isomorphic to ∆n

Q/H. □

The following corollary directly follows from Lemma 5.2 and describes
π1Of (f) for functions from F1 via embedded 2-disks and the image of the
generator M in π1Of (f).

Corollary 8.5. (1) There exist a cylinder Q and a set of mutually dis-
joint 2-disks Y = tYiju

j=0,...,ci
i=0,...,k Ă Q for some k, ci P N, and mi P N,

i = 1, . . . , k such that the following groups are isomorphic

π1Of (f)
ξ´1
2
– SQ ≀n Z

ζ1

– SY ≀n Z,

where ζ 1 = ζ ˆ . . . ˆ ζ ˆ idZ
looooooooomooooooooon

.
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(2) The group H is normal in ∆n
Y is generated by

((E1,m1, E2,m2, . . . , Ek,mk), . . . , (E1,m1, E2,m2, . . . , Ek,mk)
loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

n

, (8.3)

where Ei is the unit of the group (
ści

j=1∆Yij )
mi, and the image of H in

SY ≀n Z is generated by
((E1,m1, E2,m2, . . . , Ek,mk), . . . , (E1,m1, E2,m2, . . . , Ek,mk)
loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

n

, 0), (8.4)

8.6. Final remarks for the proof of (2) of Theorem 3.2. Similarly to
the proof of (1) of Theorem 3.2, groups π0S 1(f) and G(f) are the corres-
ponding quotient-groups π1Of (f)/π1Did(T 2) andG(f) = π0S 1(f)/π0∆

1(f),
see diagram (1.4). The images of π1Did(T 2) and π0∆

1(f) in π1Of (f) are
known, see Subsection 8.2. So it is easy to prove that an isomorphism ζ 1 ˝ξ2
induces the following isomorphisms

π0S 1(f) – (SY ≀ Zn)/H, G(f) – GY ≀ Zn,

and so it induces an isomorphism of diagrams from (2) of Theorem 3.2.
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