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Deformations of smooth functions on
2-torus

Bohdan Feshchenko

Abstract. Let f be a Morse function on a smooth compact surface M and
&'(f) be the group of f-preserving diffeomorphisms of M which are isotopic
to the identity map. Let also G(f) be the group of automorphisms of the
Kronrod-Reeb graph of f induced by elements from &'(f), and A’(f) be the
subgroup of S’'(f) consisting of diffeomorphisms which trivially act on the
Kronrod-Reeb graph of f. The group moS’(f) can be viewed as an analogue
of a mapping class group for f-preserved diffeomorphisms of M. The groups
moA'(f) and G(f) encode “combinatorially trivial” and “combinatorially non-
trivial” counterparts of moS’ (f) respectively. In the paper we compute groups
708’ (f), G(f), and meA/(f) for Morse functions on 2-torus T2.

Amwnoraris. Tomoromiiini BaacruBocTi dyHkmiii Mopca Ha OBEpXHIX BU-
BUAJIMCH HaraTbMa MaTeMaTHKaMU. 30KpeMa, KOMIIOHEHTH 3B sI3HOCTI IIpOC-
Topy dyukit Mopca 6ymm ommcani X. [lumranrom y wHeomybitikoBaHiit mparti,
C. Marseesum y pobori O. Kyapsasuesoi [6] i B. Illapkom [20]. I'pymnu xo6op-
nu3MiB ipocropy dyskuiii Mopca Gymu omucani K. Ikerami i O. Caexi [4],
a Takox B. Kanbmapowm [5]. Tnmmit mijxin 1o Busuenns gedopmaniit ys-
KIiiit Mopca 3a JIoTIoMOroro JIOC/TiKeHHs cTabiri3aTopis i opbiT nux pyHKITii
6yB 3anpononosanuii C. Makcumenkom [10, 11, 12, 14, 15] i O. Kyapsisue-
Bowo [7, 8|.

I'pyna mudeomopdismis D(M) zie cupasa Ha TpocTOpi riaakux OyHKIR
C* (M) 3a TaKUM TIPABHJIOM:

C* (M) x D(M) — C*(M), (f,h) — foh.

Hona dyuxuii f € C* (M) nexait S(f) = {h e D(M) | foh = f} — crabimni-
sarop f1O(f) ={foh|heD(M)} - opbira f Binrocuo uiel ail. Haimumo
upocropu D(M) i C* (M) cubaumu Tonosorismu Yirai. i Tonosorii inmy-
Ky[OTh jesiki ronosorii Ha npocropax S(f) i O(f). Hexait Takox Dia(M) ta
Sia(f) — 38’1301 KOMIIOHEHTH TOTOXKHBOIO BisoGpaskenusi, a Oy (f) — 38’a3Ha
kommonenta O(f), mo mictuts f. [oknagemo S'(f) = S(f) N Dia(M).
Hexait T'y — rpad dynxuii f. Toxi 6yap-axuit h € S'(f) ingyxye romeo-
mopdism rpady I'y. T'pyny Takux romeomopdismis nozaaanmo uepes G(f).
Hexait A’(f) — nigrpyna B S'(f), mo cknanaerbes i3 romeoMopdiaMis, mo
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TpUBiaabHO JiI0TH Ha rpadi GyHKIHT f, a TaKOXK € I30TOIMHUMH TOTOXKHBO-
My Bimobpazkennio. C. Makcenmenko mocmimKysas rpymn moA'(f), a Takox

dakrop-rpyny G(f) = mS'(f)/moA'(f).

Ipyna moS’(f) € meBHUM aHaIOrOM IPYTIH KJIACiB Biflobparkens 1yis muce-
omopddisMiB, 1m0 36epirarors dyuKio. Ilpu Takiit anamorii rpynu meA'(f) i
G(f) Bimobpaxarors “koMbinaTopHO TpuBiampHy' i “KOMGIHATOPHO HETPUBI-
anbuy” yactuan S’ (f).

V cepii pobir [17, 9, 16, 2] gociimKyBanacs anrebpaiusa crpyKrypa dyH-
namerTanbrol rpymu Oy (f) mist dyskuiii Mopca. Byio nokaszaro, 1mo Bona
MOXKe OyTHu oO4YMcJIeHa 3a JIOIMOMOIOI0 MOMOTOIHOI iHdopMaril npo obme-
KeHHs 3amaHol GyHKiil f Ha miamoBepxHi 2-Topa, IO € JUCKAME Ta, ITiH-
npamu y3romkennvu 3 f. ana pobora mpucBgdeHa aareOpaiTHOMY OIHCY
rpyn moS'(f), moA'(f) i G(f) nna dyukuiit Mopca na 2-Topi.

1. INTRODUCTION

Homotopy properties of Morse functions on surfaces were studied by
many authors. FE.g. connected components of the space of Morse functions
were computed in the unpublished paper by H. Zieschang, by S. Matveev
in the paper by E. Kudryavtseva [6], and V. Sharko [20], cobordism groups
of the space of Morse functions on surfaces were described by K. Ikegami
and O. Saeki [4], and B. Kalmar [5]. Homotopy groups of stabilizers and
orbits of Morse functions on surfaces with respect to the action of diffeo-
morphism groups were studied by S. Maksymenko [10, 11, 12, 14, 15| and
E. Kudryavtseva |7, 8]. We will give an overview of these results.

Let M be a smooth compact surface and X be a closed (possible empty)
subset of M. The group D(M, X) of diffeomorphisms fixed on some neigh-
borhood of X acts on the space of smooth functions C* (M) by the rule:
C*(M)xD(M,X)— C®(M), (f,h) — foh. With respect to this action
we denote by

S(f;X)=the D(M,X) [ foh= [},
O(f,X)={foh|heDM,X)}

the stabilizer and the orbit of f € C® (M) respectively. Endow strong Whit-
ney C*-topologies on C*(M) and D(M,X). Then for each f e C®(M)
these topologies induce some topologies on S(f, X) and O(f, X). We de-
note by Diq(M, X), Sia(f, X ), and O¢(f, X) connected components of the
identity map idys of D(M, X), S(f, X ), and the component of O(f, X) con-
taining f respectively. If X = @ we will omit the symbol “@ ” from our
notations, i.e., set D(M) := D(M, @), S(f) := S(f,2), O(f) := O(f,2),
and so on.

By a Morse function f on a M we will mean a smooth function which
satisfies the following conditions:
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e all critical points of f are non-degenerate and belong to the interior of
M;

e the function f takes constant values on each boundary component of M.
Notice that if N < M is a subsurface whose boundary components are

regular components of some level-sets of a Morse function f : M — R, then

the restriction f|y is a Morse function as well in the sense of the above

definition.

Theorem 1.1. [19, 10, 14, 13|. Let f be a Morse function on a smooth
compact surface M, and X be a closed (possibly empty) subset of M con-
sisting of finitely many connected components of some level-sets of f and
some critical points of f. Then the following statements hold.

(1) The map p : Dia(M,X) — O(f,X) defined by p(h) = foh is a
Serre fibration with the fiber S(f, X). Hence p(Dia(M)) = Of(f), and the
restriction p|p, ) : Dia(M) — Op(f, X) is also a Serre fibration with the
ﬁb€7’ S/(f7X) = S(f) N Did(M7 X)
for k= 1.

(3) Suppose that either f has a saddle point or M is a non-orientable
surface. Then Sia(f) is contractible, m,O¢(f) = mpM, k = 3, m0¢(f) =0,
and for mOy(f) we have the following short exact sequence of groups:

mDy(M) s mOp(f) T moS'(f) . (1.1)

Moreover the group p1(miDiq(M)) is contained in the center of mOf(f).

(4) If x(M) < | X|, then Dig(M, X) is contractible, m,Of(f, X) =0 for
k = 2, and the boundary map

o1 : mOs(f, X) — mS'(f, X)

s an tsomorphism.

We recall the definition of the map 0;. Let w : [0,1] — O¢(f), wo = w1
be a loop in Of(f) based in f. Since p is a Serre fibration, it follows that
there exists an isotopy h : M x [0,1] — M such that w; = f o hy, hg = id,
and hy € S'(f), i.e., hy is such that fohy; = f. Then the map ¢ is defined
by the formula d([w]) = [h1] € TS'(f).

!Throughout the text injective and surjective maps of groups will be also denoted by
hooked < and double-headed arrows — respectively.



Deformations of smooth functions on 2-torus 33

1.2. Automorphisms of graphs of functions on surfaces. Let
fM—->R

be a Morse function on a smooth compact oriented surface M and ¢ be a
real number. A connected component C of the level-set f~!(c) is called
critical, if C contains at most one critical point of f, otherwise C' is reqular.
Let = be a partition of M into connected components of level-sets of f.
It is well known that the quotient-space I'y = M /Z has a structure of a
1-dimensional CW complex called the graph of f, or Kronrod-Reeb graph of
f. Let also py : M — I'y be a projection map. Then f can be represented
as the composition:

f:fopf:Mgff—f>R.

Denote by Aut(I'y) the group of homeomorphisms of the graph I'y. Note
that each h € S(f, X) preserves level-sets of f. Hence, h induces the home-
omorphism p(h) of I'¢ such that the following diagram

M—2 1 R
)
M— o, R

commutes, and the correspondence h — p(h) is a homomorphism
p: S(f, X) — Aut(Ty).
One can check that the image p(S(f, X)) is a finite subgroup in Aut(I'y).
The image p(S’(f, X)) in Aut(I'y) will be denoted by G(f, X).
Let A(f, X) be the normal subgroup of S(f, X) consisting of diffeomor-
phisms which leave invariant every connected component of each level set
of f, and A’(f, X) be the following intersection A(f, X) n Djg(M, X). Tt is

known that moA/(f, X) is a free abelian group and Kerp = moA’(f, X). So
the following sequence of groups is exact

mo(f, X) < w8 (f.X) —= G(f,X), (1.2)
see |15, Section 4]. From [12, Theorem 5.2|, we have another short exact
sequence

pod1

7'['12)1(1(]\47)() X WOA/(faX) (L> ﬂ-lof(faX) — > G(faX)a (13)

in which ¢; is defined as follows. Let a € mDjq(M,X) be an element
represented by some loop {h' : M — M},cpoq] in Dig(M, X) such that
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hY = k! = idy, and ¢ € A'(f, X) = A(f) n Di(M, X). Fix any isotopy
{¢' : M — M}epo,1) between idys = #° and ¢ = ¢'. Then

1 (a, ) = [foht ogi)t] e mOs(f, X).

1.3. Main diagram. Thus for a given Morse function f on a smooth com-
pact oriented surface M we considered several spaces associated with f. If
M # S?, then all non-trivial homotopy information is encoded in the fol-
lowing commutative diagram:

pra

m1Dia(M) x mpA'(f) oA’ (f)
prli Q\ joj

1 Dia(M) o 7 04 (f) —2 7o S'(f) (1.4)
M pi
G(f),

where pr; and pry are projections onto the first and the second factor.
In diagram (1.4) horizontal, vertical and diagonal sequences coincide with
sequences (1.1), (1.2), and (1.3) respectively.

Let
A 4y P 4y, (1.5)
31(l> By ﬂ» B3 (16)

be two exact sequences of groups. Recall that sequences (1.5) and (1.6) are
isomorphic if there exist isomorphisms ¢ = {¢; : A; — B;, i = 1,2, 3} such
that the following diagram commutes

A s Ay s 4

L

B2+ By "% Bs.

Similarly one can define the notion of an isomorphism for commutative
diagrams.

The main aim of the paper is to describe diagram (1.4) for Morse func-
tions on 2-torus up to an isomorphism.

1.4. Acknowledgments. The author is grateful to Sergiy Maksymenko
for useful discussions.
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1.5. Structure of the paper. Section 2 collects definitions of wreath
products, which we need to state our main result, Theorem 3.2. We re-
call some known results about Morse functions on 2-torus and their graphs
in Section 4, and the fundamental groups of such functions is described
in Section 6. Section 5 contains some facts needed for the proofs of our
results, and we will prove Theorem 3.2 in Sections 7 and 8.

2. WREATH PRODUCTS

To state our results we need special kinds of wreath products of groups
with cyclic groups which we describe below. Let G be a group and n,m > 1
be integers. We will consider the following wreath products:

e GnZ:=G" x4 7,
o Gy :=G" xg Lnp,
o GlymZ? := G"™ x., 72,
o GU(Zp X Ly) := G X5 (L, X L),
where a : G" x Z — G™ and 8 : G x Z, — G" correspond respectively to a

non-effective Z-action and an effective Z,-action on G™ by cyclic shifts of
coordinates defined by formulas:

_ _ _ 8 _
((gi)?:olya) — (gi—i-a)f:‘l:Ol’ ((gi)?:017 b) — (9z’+b)?:017

where all indexes are taken modulo n, g; € G, a € Z, b € Z,. Similarly

v G x 72 - G" and § : G x (Zy X Zy) — G™ correspond

respectively to a non-effective Z?-action and an effective Z,, x Z,,-action on

G™™ by cyclic shifts of the corresponding coordinates defined by formulas

—1,m—1 ¥ —1,m—1
((gij)Zj:Om ’(a7 b)) — (gi-i-a,j-i-b)zj‘:[)m s
—1,m—1 s —1,m—1
((gij)?:j:om ,(a’, b/)) i (giJra’,jer’)Zj:om )
where the indexes i and j takes modulo n and m respectively, (a,b) € Z2,
(', V) € Ly, X L.

So G, Z and G Z,, are direct products of sets G" x Z and G" x Z,, with
the following multiplications

(97 CL) ’ (glv a/) = (Oé(g, a/)gl’ a+ CL/), (gv a) ’ (g,a CL,) = (B(ga b/)gl7 b+ b/),

for g, g’ € G", a,a’ € Z, and b,b' € Z,,. Similarly G, ,n Z% and GU(Zy, x Z,)
are direct products of sets G™ x Z? and G™™ x Z,, x Z,, respectively with
multiplications

(9,(a,b) - (¢, (V) = (v(g,d',0)g, (a+d,b+V)),
(g, (c,d)) - (¢, (¢, d)) = ((g, ¢, d)g, (c+ ¢ d+ d))
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for g,¢' € G"™, a,d'b,b/ € Z, ¢,c’ € Ly, and d,d' € Zy,.
The general definition of wreath product and its properties the reader
can find in [18].

3. MAIN RESULT

Let f be a Morse function on T2, I’y be its graph, and py : T2 - [y be
the projection map induced by f.

Lemma 3.1. The map p’}'é mT? - m 'y induced by py is an epimorphism
with a nonzero kernel. Hence the graph of f is either a tree, or has a unique
circutt.

Proof. Let x € T? be an arbitrary point. Note that m1(I's, ps(z)) = Fj,
where F}, is a free group of some rank k equals the number of independent
cycles in I'y, and 71 (T 2 x) is isomorphic to Z2. It is easy to see that there
exists a map s : (I'y,pr(x)) — (T% ) such that the composition ps o s
is homotopic to the identity map idr, relatively base point. Then the
composition

p*

T (g, pp(2)) =5 (T2, 2) — > 11 (T, py())

is the identity isomorphism.

Moreover p} is a surjective map and m (Ty,pp(x)) = Fy is a subgroup of
the group 71 (T?,z) = Z2. Since m (T2, ) is commutative, it follows that
F}, as a subgroup of 71 (T2, z) is also a commutative group. This is possible
only when k = 0 or k = 1. So I'y is either a tree if kK = 0, or I'y has a
unique circuit if £ = 1. In both of these cases p;‘c has a nonzero kernel. [

Denote by .% the class of Morse functions on 72 whose graphs are trees, and
by .#1 the class of Morse functions on T2 whose graphs contain circuits'.
Our main result is the following theorem.

Theorem 3.2. Let f be a Morse function on T? and Iy be its graph.

(1) Assume that f belongs to Fy. Then there exists a set of mutually
disjoint 2-disks D = {D;}I_, < T? for some r =1 such that each restriction
flp, : Di > R, i=1,...,7, is also a Morse function, and the diagram (1.4)
s isomorphic to

'"Thus the index i in &; refers to the rank of homology group Hi(T'f,Z).
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pr2

7T1Did(T2) X (A )nmn (AD)nmn

0
WlDid(TZ)CL) Sp In,nm A — Sp (Zn X an) (31)

G]D) I (Zn X an)

for some n,m € N, where

Ap=] [m0A(fIp;,D3), Sp= Hms’ flpi;0Dy),  Gp= HG flp)-

i=1 =1

(2) Assume that f belongs to F1. Then there exists a set of mutually
disjoint 2-disks Y = {Y;; }‘7 0,.. "< T? for certain k,c; € N, and m; € N,
i=0,...,k—1, such that dwgmm (1.4) is isomorphic to

mDia(T2) x (A%)/H (AY)/H
P7‘1i \ j
D (T?) s Sy 1, Z 2 (Sy 1 Z,,))
% i
GY l ZTU
for some n € N, where
k ci
Ay =T ] Aw,)™ x miZ), Ay, = m0A'(fly,,, 0Yij),
i=1 j=1
Sy = H((H SYZ;) Ul Z)a Syij = WOSI(ﬂYija a}/ij)v
i=1 j=1
GY - H H GYZJ ’L GYZ] = G(f|y7,37 aK])y
=1 j=1

and the group H is a normal subgroup of A%, isomorphic to Z and generated
by the element

(EEI’ mi, Eg,mg, e ,Ek, mk), ey (El, mi, EQ,mQ, Ceey Ek, mk)), (32)

N
n
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where E; is the unit of the group (H;Z:l Ay, )™, i=0,1...,k. The group
H is contained in the center of Sy &, Z via jo(h) = (h,0) for he H.

Remark 3.3. (1) It is known that the inclusion T? < Djq(T?) is a
homotopy equivalence, see [1, 3]. So, the group m1D;q(T?) is isomorphic to
Z2.

(2) S. Maksymenko showed that the group w1 O¢(f) is a subgroup of the
braid group of T2, see for example [15, Theorem 1.1]. The element (3.2)
can be regarded as a certain analogue of the Garside element in this braid
group.

(3) In a series of papers [17, 9, 16, 2| S. Maksymenko and the author
described groups m O ( f) for functions on 2-torus. We shortly review these
results in Section 6.

(4) Since the structure of groups m1Diq(T?) and 71 Of(f) are known, it
follows that for description of diagram (1.4) we need to find a structure of

groups mS'(f), G(f), and meA'(f).

4. FUNCTIONS ON 2-TORUS, THEIR GRAPHS, AND HOMOTOPY PROPERTIES

In this section we give a short overview of known results about graphs of
smooth functions on 2-torus, see |9, 17, 16, 2|. Let f be a Morse function
on T2, I’y be its graph, and py : T? — I'; be the projection map induced
by f.

Case 1: Functions from .%;. The following lemma holds.

Lemma 4.1. |9, Proposition 1|. Let f € %y. Then there exits a unique
vertex v in I'y such that each component of the complement Tz\pJTl(v) is
an open 2-disk. Such a vertex v of I'y is called special. O

Let v be a special vertex of I'y, G, be the stabilizer of v with respect to
the action of the group G(f) acting on I'y. Then a uniqueness of the special
vertex v implies that G, coincides with G(f). Let st(v) be a G,-invariant
connected neighborhood of v containing no other vertices of I'y. The set
Gloe = {9lst(v) | 9 € Gu} consisting of restrictions of elements of G, onto
st(v) is a subgroup of Aut(st(v)). We will call G1¢ the local stabilizer of v.
Let also 7 : G, — G'°° be the restriction map to st(v).

Lemma 4.2. [2, Theorem 2.5]. Let f € %y and v be the special vertex of
T;.

(1) Then G is isomorphic to Zy, X Zny for some n,m € N.

(2) There erists a section s : G'°¢ — S'(f) of the map r o p such that
5(G1°) freely acts on T?, so the map q : T? — T?/s(GY°) is a covering
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projection. Moreover the space of orbits T?/s(G¢) is also diffeomorphic
to T?.

Remark 4.3. (i) Throughout the paper by G!°°-action on T? we will
mean its action via the section s from (2). So we will write 72/G!°¢ instead
of T?/s(Ge°).

(ii) Let V = p}l(v) be a critical component of a level set of f which
corresponds to the special vertex v. Since Gﬁj’c freely acts on T2, it follows
that connected components of T2\p;1(v) can be enumerated by three in-
dexes Dijp, i = 1,2,...,1,7=0,...,n—1,and k =0,...,nm — 1. So, if
v = (a,b) € G = Z,, x Ly, then

’Y(Dz]k) - Di, j+a mod n, k+b mod nm-

(iii) The set D = {Djpo};_; from (1) of Theorem 3.2 will be called a fun-
damental set of this Gl°>-action. Numbers n, m and r in (1) of Theorem 3.2
are also determined from (i).

Case 2: Functions from .%7. Let f € %1, © be a unique simple cycle in
I't, z € © be a point belonging to some edge of ©, and Cy = p}l(z) cT?
be the corresponding regular component of some level set f~!(c), c € R.

Notice that f~1(c) consists of finitely many, say n, connected components
and is invariant under the action of any h € S(f). Let

C={h(Co) | heS'(f)}

be the set of all images of Cp under the action of elements from S'(f). Evi-
dently, the curves from C are pairwise disjoint. Since Cjy does not separate
T2, it follows that each C; does not separate T2 as well. Two such curves
will be called parallel, and the set C will be called parallel family on T2

We can also assume that they are cyclically enumerated along 72, so
that C; and C; 1 bound a cylinder @); such that the interior of @); does not
intersect C, where all indexes are taken modulo n. The number n from (2)
of Theorem 3.2 is the number of curves in C and we will call it the cyclic
index of f. For other details see [16].

5. PRELIMINARIES

5.1. Homotopy properties of Morse functions on cylinder. The fol-
lowing lemma holds.

Lemma 5.2. [15, Theorem 5.8, Lemma 5.1 III (a)|. Let f be a Morse
function on cylinder Q = S} x [0,1]. Then there exists a family of mutually
disjoint 2-disks Y = {Yzj}gzlg1 c Q for some k,c; € N, and m; € N,
1=1,...,k such that
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(1) fly;; is also a Morse function for each j =1,...,¢c;,i=1,...,k;

(2) there exists an isomorphism ¢ = ((1,(2,(3) of the following short
exact sequences:

ToA ()L 708! (f) —2 G(f)

2iﬁ Zl@ 2i@

Ay—" Sy ! > Gy,

where the first row is a sequence (1.2) with X = &, and

Ay = H( H Ay,)" xmiZ), Ay, = mod (fly,. 0),
k ci

Sy = H<(H Syij) tm; Z)’ SYz‘j = WOS/(ﬂYij’aYij)v
=1 j=1
k ci

Gy = H((H GYij)zzmi)7 GYij = G(f’Y”v&}/zj)
=1 j=1

(3) The kernel of the homomorphism oS’ (f, 0Q) — S’ (f) induced by
the inclusion is isomorphic to Z and is generated by the isotopy class of
rooTy , where 7; € S'(f) is a Dehn twist along S* x {i}, i = 0,1. Moreover,
in the notation of (2) [t o 7{ ] corresponds to the element

(Er,mi, ..., Ej,my) eH( HAYZ] )™ x my ) (5.1)

where Ej is the unit of ([ 5, Ay;;)™, i =1,...,k, [15, Lemma 5.1 ITI (a)].

5.3. Dehn twists and slides. Let a, 5 : [-1,1] — [0, 1] be two smooth
functions such that &« =0 on [—1,—1/2] and a« = 1 on [1/2,1], while 5 =0
n[—1,-2/3]u[2/3,1],and S =1on [-1/3,1/3].
Let Q = S* x [~1,1] be a cylinder and C = S' x 0. Define the following
two diffeomorphisms of ) by the formulas

7(z,t) = (2¢". 1), 0(z,1) = (2¢"", 1),

for (z,t) € St x [~1,1]. The diffeomorphisms 7 and 6 are called a Dehn
twist and a slide along the curve C respectively. Note that 7 is fixed on
some neighborhood of Q) and 0 is fixed on some neighborhood of C U 0Q).

Let M be a smooth surface and C < M be a simple closed curve. Sup-
pose that C' is a two-sided curve, i.e., C' has a regular neighborhood W
diffeomorphic to a cylinder ). Fix any diffeomorphism ¢ : Q — W such
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that ¢(S! x 0) = C. Since 7 is fixed on some neighborhood of 0Q), it is
easy to see that ¢ o7 0¢~ ! : W — W extends by the identity to a unique
diffeomorphism 7 of M. Any diffeomorphism h : M — M isotopic to T or
7~1 will be called a Dehn twist along C.

Similarly ¢ 0§ o ¢! : W — W extends by the identity map to the
diffeomorphism 6 of M. Any diffeomorphism h : M — M fixed on some
neighborhood of C supported on some cylindrical neighborhood W of C

and isotopic to @ or 9! relatively to some neighborhood of C'uU M\Q will
be called a slide along C. For more details see [16].

5.4. Groups mA’'(f) and their special subgroups. Let f be a Morse
function from .%; with cyclic index n, so there exists an S'(f)-invariant
family
C={C;|i=0,...,n—1}
of connected components of the same level set of f and neither of those
curves separate T2, i = 0,...,n — 1. We let denote by Q; the cylinder
bounded by curves C; and Cjt+1 mod n-
A neighborhood V of C € C will be called f-adapted if

e V is diffeomorphic to S! x [0, 1] via a diffeomorphism, say ¢, such that
e ¢ (St x {t}) is a connected component of some level set of f, t € [0, 1].

In particular, V' does not contain critical points of f. Fix an f-adapted
neighborhood V; of C;, i =0,...,n — 1, so that

- VinV; =g fori=j;

— for each i, j there exists h € S§’(f) such that h(V;) = Vj, so the union

is §’(f)-invariant.

Notice that by definition the group A’(f,V) consists of diffeomorphisms
of T? which are isotopic to idy2, fixed on an f-adapted neighborhood V of
C, and inducing trivial homeomorphisms of I'y. Let j : A'(f,V) — A’(f) be
the natural inclusion. It is known and is easy to see that the homomorphism

jo : ToA'(f, V) — moA(f)
induced by j is an epimorphism, see [15, Lemma 5.1|. Let also W; be an
f-adapted neighborhood of C; satisfying V; < IntW; for+ =0,1...,n — 1.
Put W = U?’;Ol W;, Then, [15, Corollary 7.2|, the natural inclusion
A'(f,V) = A'(f,W)

is the homotopy equivalence and groups moA’(f) and moA’(f, V) are abelian
groups.



42 B. Feshchenko

Recall that a vector field F' on a smooth oriented surface M is called
Hamiltonian-like for a Morse function f if the following conditions hold:

e singular points of F' correspond to critical points of f,

e f is constant along F,

e for every critical point z of f there exists a local coordinate system
(x,7) such that z = (0,0), f(x,y) = 2% £ y? + f(2) near z, and in
these coordinates F' has the form F(z,y) = — é% + f;%.

By [10, Lemma 5.1] for every Morse function f : M — R on a smooth
oriented surface M there exists a Hamiltonian-like vector field.

Fix a Hamiltonian-like vector field F' for the given function Morse func-
tion f on T2, and let F be the flow of F. Then W is F-invariant and consists
of periodic orbits. Therefore one can assume that periods of all trajectories
of F in W equals 1.

Let 0; : T? — T? be a slide along C; supported in W;\V;, i =0,...,n—1,
and

9:900910---0671—1-

Then, [16, Lemma 5.2], there exists a smooth function o : T2 — R such
that

e o is constant along trajectories of F,

eoc=1onV,o=0onT?W, and

e 0 =F,.
Then for k € Z we have ¥ = Fj,. From this definition it immediately
follows that 6 belongs to A’(f,V). A free abelian subgroup of moA’(f,V)
generated by 6 will be denoted by (#). The following theorem is our main
result of this section.

Theorem 5.5. For f € %1 the following statements hold true.

1) Kerjo = (0) = Z. In other words, each h € A'(f,V) is isotopic to OF()
for some k(h) € Z relatively to V whenever [h] € Kerjy.
2) The following exact sequence of abelian groups

By — mA(f,V) L= mA(f) (5.2)
splits. In particular, there is an isomorphism

7oA (f,V) = {0 x mA(f).

Proof. 1) Let h € A’(f,V). We have to show that if [h] € Kerjy, then h is
isotopic to 65" relatively V for some k(h) € Z.

Recall that the identity component of A’'(f) is Sia(f), see [15, Lemma
4.1]. Hence if h € A'(f,V) is such that [h] € Kerjo, then h € Siq(f), and
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by [15, Lemma 6.1] there exists a unique smooth function « : 72 — R such
that h = F,,.

We claim that such h admits some “simplification” on T?\W, i.e., h can
be deformed relatively V to a diffeomorphism h’ such that [h'] € Ker(jj)
and A’ is also fixed on T?\W. Indeed, fix any smooth function § : 7% — R
satisfying

L 6|V = 0, 5|T2\W = ].,
e § is constant along trajectories of F,
and define the following homotopy H! : T? — T2, t € [0, 1], by the formula

H'(h) = F; oh.

By [15, Lemma 6.1] a family {H'} is in fact an isotopy between H° = h,
W = H'(h) = F}loh, and each diffeomorphism H*(h) belongs to A'(f,V).
In particular, the isotopy classes of h and A’ in meA’(f, V) coincide, and b’
is fixed on T2\W.

So we can redenote h’ with h and additionally assume further that h is
fixed on T?\W. The restriction of a and h onto V;, i = 0,...,n — 1, will
also be denoted by «a; and h; respectively. By assumptions A is fixed on V,
that is

hi(z) = Fo,@)(7) = 2, z eV
Since the period of trajectories of F on W equals 1, it follows that «; takes
an integer value, say k;(h) € Z, depending on h for each x € V;.

We claim that in fact o; takes the same value k € Z on each V;, so all
of those numbers k;(h) must coincide. Indeed, recall that h|g, is isotopic
relatively V n Q); to a Dehn twist 7% supported in V n @);, where

a; = a(Ciy1) — a(Cy) = kiy1(h) — ki(h), i=0,...,n—1
However, as h € A’'(f,V), it follows that h|g,, ¢ = 0,...,n — 1, is isotopic
to idg, = 70 relatively to V n Q;, that is

kiJrl(h) — k‘l(h) = a; = 0,

and so kjy1(h) = ki(h) for each i = 0,...,n — 1. Thus we can denote the
common value of all k;(h) simply by k(h).

Define now an isotopy H'(h) : T? — T? between h = F,, and 6% = Frn)o
by the formula

H'(h) = F_pattkn)o,  t€0,1].

Then H'(h) is fixed on V for all ¢ € [0,1] and so each h with [h] € Kerj is
isotopic to #¥() relatively to V. In other words, Kerjo < (6).

The inverse inclusion is easy (#) < Kerjy, and so Kerjy = (#) is a free
abelian group generated by the element 6.
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2) Now it follows from 1) and surjectivity of jy that we have a short exact
sequence (5.2):

) > mA(f,V) 2 moA(f).

Moreover, [10], it consists of abelian groups and the group moA’(f) is a free
abelian. Therefore the above sequence splits, i.e., there is an isomorphism

7TOA/<f, V) = 7TOA’(f) X <0> U

6. ORBITS OF MORSE FUNCTIONS ON 2-TORUS

The following theorem describes the fundamental groups of orbits of
Morse functions on 2-torus. We showed that they can be computed using
zero homotopy groups of stabilizers of restrictions of the given function onto
subsurfaces of T? being 2-disks and cylinders.

Theorem 6.1. [17, 9, 16, 2. Let f be a Morse function on T?, and I'y be
its graph.

(1) Assume that f belongs to Fo and G'°¢ = Z,, X Ly, for somen, m € N,
Then there exists a set of mutually disjoint 2-disks D = {D;}I_, < T2 for
some r € N which is a fundamental set of the free GY-action on T? such
that the restriction f|p,, i =1,...,7, is a Morse function, and there is an
isomorphism

&1 2 Sp tnum Z2 — m Oy (f), (6.1)

T
where Sp := [ 70S'(f|p,,@D;). Moreover r is the number of orbits of free
i=1

Gloc_action on T2.

(2) Assume that f belongs to 1 and has a cyclic index n € N. Then
there exists a cylinder Q < T? such that flq s also a Morse function and
we have an isomorphism

52 ISQ ZnZ—>7T10f(f), (62)
where Sq = 1S’ (f|g, 0Q).

6.2. Strategy of the proof of Theorem 3.2. First we recall explicit
definitions of isomorphisms

51 :S]D) 2n,nm Z2 _’Wlof(f)a 52 :SQ ZHZ_)FlOf(f)

from Theorem 6.1 in Subsections 7.1 and 8.1 respectively. Since groups
moS'(f) and G(f) are quotient-groups

108 (f) = mOs(f)/mDia(T?),
G(f) = mOs(f)/(mDia(T?) x moA'(f)),
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see diagram (1.4), it follows that in order to describe them and the diagram
(1.4) we need to characterize images of 71 D;jq(T?) and moA'(f) with respect
to the maps §; L and &y L and take the corresponding quotient-groups. This
will be done in Subsection 7.2 and Subsection 8.2.

7. PROOF OF (1) OF THEOREM 3.2

Due to our strategy, see Subsection 6.2, first we give the explicit descrip-
tion of the isomorphism &1 : Sp tn,nm 72 — mOf(f).

7.1. Isomorphism from (1) of Theorem 6.1. Let f be a Morse function
on T? = R?/7Z? such that its graph I'; is a tree, v be the special vertex of
'y, and Gif’c Ly, X Lipym, be the local stabilizer of v. Then the free action
of Zyp, X Ly on T? can be given by:

b
H(a,b)(%,y) = (36 + 4 mod 1, y + — mod 1),
n nm

for (a,b) € Zyp X Zpm and (z,y) € T2, and the quotient space T2/Glc is
diffeomorphic to T? = R?/Z?2, so that the quotient map ¢ : T2 — T?/Gl¢
is given by the formula

q(z,y) = (nz mod 1, nmy mod 1).

Let y be a point in 72, and z = ¢(y) € T?/G'¢. Then we obtain the
following commutative diagram with exact rows

’y ( m (T2/Gloc ) 0 Gi}oc
=
7 a 72 Zoow X Loms
where the maps ¢; and ¢ are given as follows
@1 (A, ) = (nA, nmp), d(z,y) = (x mod n, y mod nm).

Let L,M : T? x R — T2 be smooth flows on 72 defined by
t t

L(z,y,t) = <x—i— — mod 1, y, t), M(z,y,t) = (:L', y+ — mod 1, t).
n nm

Then they commute each with other, and

La(x7 y) = K(a,0) (.%', y)7 Mb(x7 y) = K(0,b) (ZC, Z/),
for a,b € R. Moreover, L, = M,,;;, = idr2, and the restrictions
L: T2 x [0,n] — T, M: T2 x [0,nm] — T?

can be regarded as loops in Diq(T?) constituting also a basis (1,0), (0,1)
of 7T1Did(T2) = ZQ.
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Then, [2], the isomorphism &1 : Sp by nm Z2 — m Oy (f), see (6.1), can be
defined as follows. Let

({hijk}a (a7 b)) € Sp In,nm Z2a

where hijk € S'(f|Diges @Dioo), (a,b) € Z%, i =1,...,r, 5 =0,...,n — 1,
k=0,...,nm—1. For each triple (i, 7, k) fix any isotopy hfjk : Dioo — Do,
t € [0, 1] between hgjk = idp,,, and hgjk = hjji, relatively some neighborhood
of 8Di00. Then
& ({hij}, (a, b)) = [{f o 1"}, (7.2)
where h! : T? — T2, t € [0, 1], is given by the formula
{Mk-ﬁ-i o Lj-i-%t o hfjk o Lj_1 o Mlzl(x)}ijka x € Dijk:a
hi(z) = " (7.3)
M oLat (), x e N,

D;ji, is a 2-disk defined in (ii) of Remark 4.3, and N is a regular neigh-
borhood of the critical level-set V = p}l(v) containing no other critical
points.

7.2. Images of mD;y(T?) and mA'(f) in Sp lynm Z*. The following
lemma describes the images of the groups m1Diq(T?) and moA'(f) with
respect to the map 451_1.

Lemma 7.3. (1) Let Z,0 = (e,...,e,n,0) and Zonm = (e,...,€,0,nm)
~— ~—

nmn nmn
be elements from Sp . nm 72, where e is the unit of Sp. Then

piL) = &(Zno); (M) = &1(Zo.nm)-

(2) The isomorphism & induces an isomorphism
E1lanmn = (AR™™,0,0) — 11 (moA'(f)).

Proof. (1) Indeed, & (Z, ) is a loop foht, where h' is given by (7.3) with
a=1and b= 0. Then by (7.3) the isotopy h has the form h! = L;.

The case of p;(M) can be checked similarly and we leave this verification
to the reader. So we have pi({L)) = & ((Zn,0)) and p1({M)) = &1({Zo.nm))-

(2) Let ¢ : moA'(f) — mOy(f) be the restriction of ¢1 onto mA'(f).
We need to show that &; isomorphically maps the subgroup (Ag™",0,0)
of Sp tynm Z* onto 1(meA’(f)). Obviously, an isomorphism ¢; induces a
monomorphism &;[apmn : AF™" — 11(meA’(f)). It remains to show that
§1apmn is an epimorphism.

Let 7 be a Dehn twist supported on some 2-disk

D e {Djr}izt,..r j=0,..n—1,k=0,...nm—1
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so it isotopy class [T] is a free generator of a free abelian group moA'(f).
Fix an isotopy 7 : T2 — T? between 7! = 7 and 70 = ids2. The image
t([7]) is given by the class of the loop [fo7!]. It follows from (7.3) that there
exist a diffeomorphism h of D and an isotopy ht: D — D between h' = h
and A0 = idp such that &, ({[h 1},0,0) = [for"]. Also we get from (7.3) that
h is conjugate to 7|p, and so h is a Dehn twist. Hence h belongs to Ap™".
Thus {ﬂAﬁmn is an isomorphism. O

7.4. Final remarks to the proof of (1) of Theorem 3.2. Notice that
by Diagram (1.4):

mS'(f) = mOs(f)/mDia(T?), G(f) = mS'(f)/moA'(f)
The images of mDia(T?) and mA’(f) in m1Of(f) are described in Subsec-
tion 7.2. Then one easily proves that & induces the following isomorphisms

0S8 (f) = Sp L (Zy, X Zpm), G(f) = Gp 1 (Zn, X Znm),

as well as isomorphism of diagrams from (1) of Theorem 3.2.

8. PROOF OF (2) OF THEOREM 3.2

First we recall the definition of the isomorphism & : Sg 4, Z — m1 O¢(f).

8.1. Isomorphism from (2) of Theorem 6.1. Let f be a Morse function
from .#; with a cyclic index n and circuit © in the graph I'y. As curves
from C are “parallel”, one can assume that the following conditions hold:

(a) C; =L x St c R?/7*% =

(b) there exists € = 0 such that for all t € (£ —e, L +¢) the curve ¢ x S!
is a regular connected component of some level set of I

Let L,M: T? x R — T? be two flows defined by formulas:

Lt(f]?,y) = (Q? + ¢ mod 17 y)v Mt(‘ray) = (l’, Y + ¢ mod 1)7

zeC, yeCy and t € R.
Denote by @ the cylinder bounded by Cy and C7. Then the isomorphism
£2:8Q tn Z — m Oy (f) can be defined as follows, [16, Section 8|. Let

(hi,... hnia) € Sg i Z

where h; € Sg, i =0,...,n, and a € Z. Fix any isotopy h! between h = idg
and h} = h;. Then

&R, ... hlia) = [f oAl (8.1)
where h! is defined by the formula

h'(z) = {Lijat o hioL; Y (z)}izo,.ny T € Q. (8.2)
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8.2. Images of mDiy(T?) and meA/(f) in 8@ tn Z. The following lemma
easily follows from the definition of the isomorphism & similarly to (1) of
Lemma 7.3.

Lemma 8.3. Let Z = (¢/,...,€,n) be the element from Sq l, Z, where €'
R/—/

is the unit of Sg. Then pi(L ) &(2). O

The image of another generator M in mOf(f) is “invisible” in our de-
scription of the group m1O¢(f) via Sg i, Z, however in [16, Theorem 6] we
showed that pi (M) in mO¢(f) is given by [f o], where § = fyo...00,_1 is
the generator of H = (#), and 0; is a slide along C;, see Section 5.3. Then
by Theorem 5.5 groups moA'(f) x (M) and moA’(f,C) are isomorphic as
subgroups of m1Of(f). So moA'(f) = moA'(f,C)/H.

Lemma 8.4. The isomorphism & induces an isomorphism
&2lap 1 (A5, 0) = u(mA'(f,C)),
where Ag = moA'(flg, 0Q). So moA'(f) is isomorphic to Afy/H.

Proof. Obviously, the isomorphism & induces a monomorphism & Ay
Then 7 € A'(f,C) be a Dehn twist supported in @ € {Q;}i=o,...n—1, such
that its isotopy class [7] is one of free generators of the free abelian group
moA/(f,C). Fix an isotopy 7¢ : T? — T? such that 7! = 7 and 7° = id.
Then ¢([7]) = [f o 7!]. From (8.1) there exists a dlﬁeomorphlsm h:Q—Q
and an isotopy ht : Q — Q between h! = h and h® = idg such that
&([h],0) = [f o 7!]. By (8.2) h is conjugate to 7g, then h is also a Dehn
twist. Hence h belongs to A” So & A is an isomorphism, and hence
moA’(f) is isomorphic to A/ H O

The following corollary directly follows from Lemma 5.2 and describes
m Oy (f) for functions from .#; via embedded 2-disks and the image of the
generator M in m Oy (f).

Corollary 8.5. (1) There exist a cylinder @ and a set of mutually dis-
joint 2-disks Y = {Y”}J =0, < Q for some k,¢; € N, and m; € N,
i=1,...,k such that the followmg groups are isomorphic
% ¢
7r1(9f(f) = SQ inZ = Sy U, Z
where (' = x ... x ( x idg,.
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(2) The group H is normal in AY, is generated by
((Elamlv E25 ma,... 7Ek7mk‘)a DRI (Elamla E27m25 o aEka mk‘)a (83)
n
where E; is the unit of the group (H;;l Ay;; )™, and the image of H in
Sy W Z is generated by
((Ehml) E27m27 ey Ekamk)7 ey (E17m17 E27m27 ce. 7Ek7mk)7 0)7 (84)

<

n
8.6. Final remarks for the proof of (2) of Theorem 3.2. Similarly to
the proof of (1) of Theorem 3.2, groups myS'(f) and G(f) are the corres-
ponding quotient-groups m O (f)/m1Dia(T?) and G(f) = moS'(f)/moA'(f),
see diagram (1.4). The images of mDiq(T?) and meA'(f) in m Oy (f) are
known, see Subsection 8.2. So it is easy to prove that an isomorphism ¢’ o0&,
induces the following isomorphisms

m0S'(f) = (Sy 1 Zn)/H, G(f) = Gy ULy,

and so it induces an isomorphism of diagrams from (2) of Theorem 3.2.
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