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Commutative morphic rings of stable range 2
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Abstract It is know that a left quasi-morphic ring R is a ring of stable range 1
if and only if dimR = 0. In this paper it is shown that a commutative morphic

ring R is a ring of stable range 2 if and only if dimR = 1.
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Introduction

In his pioneering paper [3] Kaplansky has raised the question: If aR = bR in a
ring R, are a and b necessarily right associates? He remarked that for a commu-
tative ring the property holds for the principal ideal rings and artinian rings.

Developing these ideas Canfell [2] to introduce the concept of the set of
principal ideals {a;R|i = 1,2, ...,n} is uniquely generated if whenever a; R = b; R
there exist elements u; € R such that a; = b;u;, 2 =1,2,...,n,and uy R+us R+
...+u,R = R. The dimension of a commutative ring R, denoted by dimR, is the
least integer n such that every set of n+ 1 principal ideals is uniquely generated.
In [3] Canfell obtained characterizations of the n-dimensional F-spaces in terms
of the rings of continuous real-valued and complex-valued functions defined on
the space. By extending the notion of uniqueness of generators of principals he
gave an algebraic characterization of the concept “n-dimensional”.

In [1] Bass introduced the notion of stable range for a ring. A ring R with

stable range one is both left and right uniquely generated [6]. The converse does
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not hold true in general. Then Z is uniquely generated. Indeed, the ring 7Z is
uniquely generated, but Z does not have stable range one. The stable range of
Z is equal 2 [6].

In the case of a left quasi morphic ring we have that property a left uniquely
generated is equivalent to the property of stable range one [5].

In this article we will show that in the case of a commutative morphic ring
we see that the property dimR = 1 is equivalent to the property of the stable
range 2.

1 Results

All our rings are commutative with identity. A ring R is said to have stable range
2 if for any a, b, ¢ € R such that aR+ bR+ cR = R there exist z,y € R such that
(a + cx)R+ (b+ cy)R = R [6] (in the notion st.r(R) = 2). We say that a ring
R is an almost Baer ring if for each z € R there exists an element y € R such
that Ann(xR) = yR where Ann(zR) = {z|zzr = 0,r € R}. By a Bezout ring we
mean a ring in which all finitely generated ideals are principal. Two rectangular
matrices A and B are equivalent if there exist invertible matrices P and @Q of
adequate size such that B = PAQ. A ring R is Hermite if every rectangular
matrix A over R is equivalent to an upper or a lover triangular matrix [3]. Any

Hermite ring is a Bezout ring [2]. In [6] we have the following theorem.

Theorem 1 A commutative Bezout ring R is an Hermite ring if and only if
st.r(R) = 2.

A commutative ring R is called a morphic ring if for any a € R there is an

isomorphism R/Ra = Ann(a) as of R modules.

Theorem 2 Let R be a commutative Bezout ring and dimR = 1. Then st.r(R) =
2.

Proof Let a,b € R. Since R is a commutative Bezout ring, aR + bR = dR, for
some element d € R. There exist ag,bg € R and u,v € R such that a = dag,
b = dby and d = au + bv = agud + bgvd. Put ¢ = 1 — agu — bgv.

Then dq = 0 and for any elements t1,t> € R we (ap+t1q)d = a, (bo+t2q)d = b.
We will choose the ¢;, i = 1, 2. So that the elements ag+t1q¢ = a1 and byg+taqg = b
generate R.

Then a;z + b1y = 1 for some elements z,y € R and a = a1d, b = b1d. By
[3] R is an Hermite ring and by Theorem 1 we have st.r(R) = 2. The theorem is

proved.
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Theorem 3 Let R be a commutative almost Baer Bezout ring of stable range
2. Then dim(R) = 1.

Proof Let a1 R = b1 R and asR = by R. Then a1 = x1b1, as = x2b and by = y1a1,
by = yeaq for some 1, x2,y1,y2 € R. Then b1 (1 — z1y1) = 0, ba(1 — x2y2) =0
and 1 — x1y1 € Ann(biR), 1 — xoys € Ann(byR). Let Ann(biR) = a3 R and
Ann(bsR) = as R for some «ay, a2 € R.

Since 1 — z1y7 € ar R and 1 — z2y2 € as R, we have z1R + a3 R = R and
xaR+asR = R. Obviously, 1 R+ 22 R+ ajasR = R. Since st.r(R) = 2, we have
(1 + a1a2s)R + (22 + ajast)R = R for some st € R. Since (z1 + ajaat)by =
21b1 +agtarh = 2101 = aq, (x2+arass)by = xobs + @1 saeb = x9by = as. Denote
T +arast = up, To + 1S = us.

We proved u1by = a1, usby = as and uy R + usR = R, that is dim(R) = 1.

The theorem is proved.

A commutative morphic ring is an obvious example of an almost Baer Bezout
ring [4].

As a consequence of Theorem 2 and Theorem 3 we obtain the following result.

Theorem 4 A commutative morphic ring R is a ring of stable range 2 if and
only if dim(R) = 1.
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