Centralizers of elements in Lie algebras of vector fields with polynomial coefficients

Chapovskyi Y., Efimov D., Petravchuk A.

Abstract. Let \mathbb{K} be an algebraically closed field of characteristic zero, $A = \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring, and $R = \mathbb{K}(x_1, \ldots, x_n)$ the field of rational functions in n variables. Denote by $W_n = W_n(\mathbb{K})$ the Lie algebra of all \mathbb{K}-derivations on A (in case \mathbb{C} it is the Lie algebra of all vector fields on \mathbb{C}^n with polynomial coefficients). For a given $D \in W_n(\mathbb{K})$ the structure of the centralizer $C_{W_n(\mathbb{K})}(D)$ depends on the field of constants $\ker D = \{ \phi \in R \mid D(\phi) = 0 \}$ (here we extend naturally every derivation D of A on the field R). The case $\text{tr. deg}_K \ker D \leq 1$ is studied, the structure of the subalgebra $C_{W_n(\mathbb{K})}(D)$ is characterized, in particular it is proved that if $\ker D$ does not contain any non-constant polynomial, then $C_{W_n(\mathbb{K})}(D)$ is finite-dimensional over \mathbb{K}.

Some results about centralizers of linear derivations in $W_n(\mathbb{K})$ are obtained.

The first author was supported by Ministry of Education and Science of Ukraine: Grant for perspective development of a scientific direction "Mathematical sciences and natural sciences" at Taras Shevchenko National University of Kyiv, the third author was partially supported by the Ukrainian Government Scientific Research Grant No. 19BF38-02.

Keywords: Lie algebra, derivation, vector field, polynomial ring, centralizer

DOI: http://dx.doi.org/10.15673/tmgc.v14i4.2153
Let \mathbb{K} be an algebraically closed field of characteristic zero (without loss of generality one can assume that $\mathbb{K} = \mathbb{C}$, the field of complex numbers). Denote by $A = \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring and by $R = \mathbb{K}(x_1, \ldots, x_n)$ the field of rational functions in n variables.

Recall that a \(\mathbb{K}\)-linear map $D : A \to A$ is a \(\mathbb{K}\)-derivation (or simply a derivation) whenever
\[
D(fg) = D(f)g + fD(g)
\]
for all $f, g \in A$. In case $\mathbb{K} = \mathbb{C}$ every \(\mathbb{C}\)-derivation can be considered as a vector field on on \(\mathbb{C}^n\) with polynomial coefficients. We will use this standard correspondence between (polynomial) vector fields and derivations on (polynomial) rings. Any derivation D on $A = \mathbb{K}[x_1, \ldots, x_n]$ can be uniquely extended to the derivation D on $R = \mathbb{K}(x_1, \ldots, x_n)$ (we use the same notation here) by the rule
\[
D(f/g) = (D(f)g - fD(g))/g^2
\]
for all $f, g \in A$, $g \neq 0$.

The Lie algebra $W_n(\mathbb{K})$ of all \(\mathbb{K}\)-derivations on A is of great interest because its finite dimensional subalgebras are closely connected with symmetries of differential equations (recall that any derivation D on A is of the form
\[
D = f_1(x_1, \ldots, x_n) \frac{\partial}{\partial x_1} + \ldots + f_n(x_1, \ldots, x_n) \frac{\partial}{\partial x_n}
\]
for some $f_i \in \mathbb{K}[x_1, \ldots, x_n]$, where $\frac{\partial}{\partial x_i}$ are partial derivatives on A).

Finite dimensional subalgebras of the Lie algebras $W_1(\mathbb{C})$ and $W_2(\mathbb{C})$ were classified by S. Lie [4] (more precisely Lie algebras of vector fields with
Centralizers of elements in Lie algebras of vector fields

analytical coefficients were described in [4]). Analogous problem for \(W_3(\mathbb{C}) \) is open, the problem of classifying all finite-dimensional Lie subalgebras of vector fields from \(W_n(\mathbb{C}), n \geq 4 \) is wild [1].

If \(D \in W_n(\mathbb{K}) \), then the centralizer \(C_{W_n(\mathbb{K})}(D) \) is a subalgebra of \(W_n(\mathbb{K}) \) consisting of all vector fields commuting with \(D \). An information about \(C_{W_n(\mathbb{K})}(D) \) can be useful in many cases. For example, every vector field \(D \in W_n(\mathbb{C}) \), \(D = \sum_{i=1}^{n} f_i(x_1, \ldots, x_n) \frac{\partial}{\partial x_i} \) defines an autonomous system of ODE:

\[
\begin{align*}
\frac{dx_1}{dt} &= f_1(x_1, \ldots, x_n) \\
\vdots \\
\frac{dx_n}{dt} &= f_n(x_1, \ldots, x_n)
\end{align*}
\]

(1.1)

with polynomial coefficients and information about \(\ker D \) and \(C_{W_n(\mathbb{K})}(D) \) can be very useful for searching solutions of (1.1) see, for example [5].

Given \(k \) commuting linearly independent over \(R \) vector fields on a smooth \(n \)-manifold \(M \), one can construct a local coordinate system on \(M \) in which these vector fields are of the form \(\frac{\partial}{\partial x_i}, i = 1, \ldots, k \) (see, e.g. [3, Th. 9.46]). We study centralizers of elements \(D \in W_n(\mathbb{K}) \) in case when \(\ker D \) (in the field \(R = \mathbb{K}(x_1, \ldots, x_n) \)) is of transcendence degree \(\leq 1 \) over \(\mathbb{K} \), i.e. any two rational functions \(f, g \) annihilated by \(D \) are algebraically dependent over \(\mathbb{K} \).

In case \(\text{tr.deg}_{\mathbb{K}} \ker D = 0 \) we have \(\ker D = \mathbb{K} \) and then \(C_{W_n}(D) \) is a vector space of dimension \(\leq n \) over \(\mathbb{K} \).

If \(\text{tr.deg}_{\mathbb{K}} \ker D = 1 \), then by Gordan’s theorem (see, e.g. [8]) either \(\ker D = \mathbb{K}(p) \) or \(\ker D = \mathbb{K}(\frac{p}{q}) \), where \(p, q \) are irreducible polynomials that are algebraically independent over \(\mathbb{K} \).

If \(\ker D = \mathbb{K}(p) \), then the centralizer \(C \) is a module over the ring \(\mathbb{K}[p] \) of rank \(k \), \(1 \leq k \leq n \) and \(C \) is either a Lie algebra over \(\mathbb{K}[p] \) or it contains an ideal \(I \) of rank \(k - 1 \) which is a Lie algebra over \(\mathbb{K}[p] \) and \(C = I + \mathbb{K}[p]T \) for some derivation \(T \in C \) (Theorem 3.1).

In case \(\ker D = \mathbb{K}(p/q) \) we have that

\[
C = (\mathbb{K}(p/q)D + \ldots + \mathbb{K}(p/q)D_{k-1}) \cap W_n(\mathbb{K})
\]

and \(C \) is finite-dimensional over \(\mathbb{K} \) (Theorem 3.3).

We use standard notation. Every derivation \(D \in W_n(\mathbb{K}) \) can be uniquely written in the form

\[
D = f_1(x_1, \ldots, x_n) \frac{\partial}{\partial x_1} + \ldots + f_n(x_1, \ldots, x_n) \frac{\partial}{\partial x_n}
\]

for some \(f_i \in A \). One can show that every nonzero derivation \(D \) can be written in the form \(D = hD_0 \), where \(D_0 \) is reduced, i.e. if \(D_0 = h_1D_1 \) for some \(D_1 \in W_n(\mathbb{K}) \) and \(h_1 \in A \) then \(h_1 \in \mathbb{K}^* \). Denote by \(\overline{W}_n(\mathbb{K}) \) the Lie
algebra of all \mathbb{K}-derivations of the field $R = \mathbb{K}(x_1, \ldots, x_n)$. It is obvious that $\widetilde{W}_n(\mathbb{K})$ is a vector space of dimension n over R (with the standard basis $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$) but not a Lie algebra over R.

A rational function $\varphi \in R = \mathbb{K}(x_1, \ldots, x_n)$ is called closed if the subfield $\mathbb{K}(\varphi)$ is algebraically closed in the field R.

2. PRELIMINARY RESULTS ABOUT CENTRALIZERS

Lemma 2.1. Let $D \in W_n(\mathbb{K}) \setminus \{0\}$, F be the field of constants of D in R, and $C = C_{\widetilde{W}_n(\mathbb{K})}(D)$. Then either

- $C = C_{\widetilde{W}_n(\mathbb{K})}(D) = FD$, or
- $C = FD + FD_2 + \cdots + FD_k$ for some $D_2, \ldots, D_k \in C$ with D, D_2, \ldots, D_k linearly independent over R.

Proof. Note that C is a subalgebra of the Lie algebra $\widetilde{W}_n(\mathbb{K})$ over the field \mathbb{K} and $D \in C$. Choose a basis D, D_1, \ldots, D_k (this includes the case $k = 0$) for the vector space RC over the field R. Every $T \in C$ (note that $C \subseteq RC$) can be written in the form $T = rD + r_2D_2 + \cdots + r_kD_k$ for some $r, r_i \in R$. But then the equality $[D, T] = 0$ implies $D(r_i) = 0$, $i = 1, \ldots, k$, i.e. $r_i \in \ker D = F$.

On the contrary, one can note that any element from $FD + \cdots + FD_k$ belongs to C. Therefore $C = FD + \cdots + FD_k$. If $F \subseteq \ker D_i$ for all $i \geq 2$, then C is not only k-dimensional vector space over F but also a Lie algebra over F. \square

Corollary 2.2. Under assumption of Lemma 2.1, if $F = \mathbb{K}$ then C is a k-dimensional Lie algebra over the field \mathbb{K}.

Example 2.3. Let $D \in W_n(\mathbb{K})$ be a linear derivation,

$$D = f_1(x_1, \ldots, x_n) \frac{\partial}{\partial x_1} + \cdots + f_n(x_1, \ldots, x_n) \frac{\partial}{\partial x_n},$$

$$f_i(x_1, \ldots, x_n) = D(x_i) = \sum_{j=1}^{n} a_{ij}x_j.$$ Assume also that the Jordan normal form of the matrix (a_{ij}) is diagonal

$$\begin{bmatrix}
\lambda_1 & \cdots & 0 \\
0 & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{bmatrix},$$

where λ_i are linearly independent over \mathbb{Z} eigenvalues of the matrix (a_{ij}). Then $C = C_{\widetilde{W}_n(\mathbb{K})}(D)$ is of rank n over R and has dimension n over \mathbb{K}. Indeed, $\ker D = \mathbb{K}$ by [6, Theorem 10.1.2]. Let

$$L = \left\{ \sum_{j=1}^{n} \mu_jx_j \frac{\partial}{\partial x_j} \mid \mu_j \in \mathbb{K} \right\}.$$
One can easily see that \(L \subseteq C \) and \(\text{rk}_RL = n \). Therefore \(\text{rk}_RC = n \) and \(\dim_{\mathbb{K}}C = n \) by Lemma 2.1.

Lemma 2.4. Let \(\mathbb{K} \) be an algebraically closed field of characteristic zero and \(L \) an algebraically closed subfield of the field \(R = \mathbb{K}(x_1, \ldots, x_n) \) with \(\text{tr.deg}_\mathbb{K}L = 1 \). If \(L \) contains a non-constant polynomial from

\[
A = \mathbb{K}[x_1, \ldots, x_n] \subset R,
\]

then \(L = \mathbb{K}(p) \) for some irreducible polynomial \(p \in A \). If \(L \cap A = \mathbb{K} \), then \(L = \mathbb{K}(p/q) \) for some irreducible polynomials \(p, q \in A \) which are algebraically independent over \(\mathbb{K} \).

Proof. By Gordan’s theorem (e.g. [8, Theorem 3]) we have that \(L = \mathbb{K}(\varphi) \) for some rational function \(\varphi \in R \).

First let \(L \cap A = \mathbb{K} \). The by [7, Corollary 1], we have that \(L = \mathbb{K}(\frac{p}{q}) \) for some irreducible polynomials \(p, q \) which are algebraically independent over \(\mathbb{K} \). Now let \(L \cap A \neq \mathbb{K} \) and \(r \in (L \cap A)\backslash \mathbb{K} \). Then \(r = F(\frac{p}{q}) \) or \(r = F(p) \) for some rational function \(F(t) \in \mathbb{K}(t) \):

\[
F(t) = \frac{a_0x^m + a_1x^{m-1} + \cdots + a_m}{b_0x^n + b_1x^{n-1} + \cdots + b_n},
\]

with \(a_i, b_j \in \mathbb{K} \), \(a_0b_0 \neq 0 \). If \(r = F(p/q) \), then

\[
F(p/q) = \frac{a_0p^m + \cdots + a_mq^m}{b_0p^n + \cdots + b_nq^n}q^{n-m}
\]

and the numerator and denominator here are homogeneous polynomials in \(p \) and \(q \) of degree \(\max\{m, n\} \). For simplicity assume that \(n \geq m \) for simplicity. Then

\[
r = F(p/q) = \frac{(\alpha_1p + \beta_1q)\cdots(\alpha_np + \beta_nq)}{(\gamma_1p + \delta_1q)\cdots(\gamma_np + \delta_nq)} \tag{2.1}
\]

for some \(\alpha_i, \beta_i, \gamma_i, \delta_i \in \mathbb{K} \) since the ground field \(\mathbb{K} \) is algebraically closed.

Note that the polynomials \(\alpha_ip + \beta_iq \) and \(\gamma_ip + \delta_iq \) are either coprime (when \(\left| \begin{array}{l} \alpha_i \\ \gamma_i \end{array} \right| \beta_i \left| \begin{array}{l} \alpha_i \\ \gamma_i \end{array} \delta_i \right| \neq 0 \)) or proportional with a multiplier in \(\mathbb{K}^* \) when \(\left| \begin{array}{l} \alpha_i \\ \gamma_i \end{array} \right| \beta_i \left| \begin{array}{l} \alpha_i \\ \gamma_i \end{array} \delta_i \right| = 0 \).

Since the rational function \(F(t) \) can be choosen irreducible, the equality (2.1) is impossible because its numerator and denominator are coprime and \(r \) is a non-constant polynomial. Thus the case \(L = \mathbb{K}(p/q) \) is impossible and \(L = \mathbb{K}(p) \) for an irreducible polynomial \(p(x_1, \ldots, x_n) \).

Proposition 2.5. Let \(D_1 \in \widetilde{W}_n(\mathbb{K}) \) be such a derivation of the field \(R \) that \(F = \text{ker}D_1 \) in \(R \) is of transcendence degree 1 over \(\mathbb{K} \). Then the centralizer
\[C = C_{W_n(K)}(D_1) \text{ is a subalgebra of } \tilde{W}_n(K) \text{ of } \text{rk}_R C = k, \ 1 \leq k \leq n, \text{ and} \]
\[C = FD_1 + FD_2 + \cdots + FD_k \]

for some \(D_2, \ldots, D_k \in C \). Moreover, either \(C \) is a Lie algebra over \(F \) of dimension \(k \), or \(C \) contains an ideal of corank one over \(R \) which is a Lie algebra over \(F \) of dimension \(k - 1 \).

Proof. By Gordan’s theorem (e.g. [8, Theorem 3]) we have that \(F = K(\varphi) \) for some closed rational function \(\varphi \in R \). Choose a basis \(D_1, D_2, \ldots, D_k \) of \(C \) over \(R \). As \([D_1, D_i] = 0, i = 1, \ldots, k \), we have \(D_i(\ker D_1) \subseteq \ker D_1 \). So \(D_i(\varphi) = f_i(\varphi) \) for some rational functions \(f_i(t), i = 1, \ldots, k \).

If \(f_1(t) = \cdots = f_n(t) = 0 \), then \(F \subseteq \ker D_i \) for \(i = 1, \ldots, k - 1 \). Therefore, \(C = FD_1 + \cdots + FD_k \) is a \(k \)-dimensional Lie algebra over the field \(F \).

Now suppose that \(f_i(t) \neq 0 \) for some \(i, 2 \leq i \leq n \). Then one can easily prove that \(f_i(\varphi) \neq 0 \). Denote by \(C_0 = \{ T \in C \mid T(\varphi) = 0 \} \) the annihilator of the element \(\varphi \) in \(C \). Since \(D_i(\ker D) \subseteq \ker D \), we see that \(C_0 \) is an ideal of \(C \). We claim that \(\text{rk}_R C_0 = k - 1 \). Indeed, if \(T, S \in C \setminus C_0 \) then \(T(\varphi) = g(\varphi) \) and \(S(\varphi) = h(\varphi) \) for some nonzero rational functions \(g(t) \) and \(h(t) \). It now follows that \(h(\varphi)T - g(\varphi)S \in C_0 \) and therefore \(\text{rk}_R C/C_0 = 1 \). Thus we have \(\text{rk}_R C_0 = k - 1 \).

Next, we point out a series \(D_2, \ldots, D_n \) of derivations on the polynomial ring \(K[x_1, \ldots, x_n] \) with centralizers \(C_i = C_{W_n}(D_i) \) such that
\[\text{rank}_R C_i = n - i + 1, \quad i = 2, \ldots, n. \]
We use the known simple derivation from [6, Example 13.4.3].

Lemma 2.6. Let \(D_k = \frac{\partial}{\partial x_1} + (1 + x_1 x_2) \frac{\partial}{\partial x_2} + \cdots + (1 + x_{k-1} x_k) \frac{\partial}{\partial x_k} \) be a derivation of the polynomial ring \(K[x_1, \ldots, x_n], 2 \leq k \leq n \). Then
(1) \(\ker D_k = K[x_{k+1}, \ldots, x_n] \) for \(k < n \) and \(\ker D_n = K; \)
(2) \(C_k = C_{W_n(K)}(D_k) = K[x_{k+1}, \ldots, x_n] D_k + K[x_{k+1}, \ldots, x_n] \frac{\partial}{\partial x_{k+1}} + \cdots + K[x_{k+1}, \ldots, x_n] \frac{\partial}{\partial x_n} \),

for \(k < n \) and \(C_n = K D_n \).

In particular, \(\text{rk}_R(C_k) = n - k + 1 \).

Proof. (1) The polynomial ring \(A = K[x_1, \ldots, x_n] \) can be considered as the polynomial ring in variables \(x_1, \ldots, x_k \) over the ring \(F := K[x_{k+1}, \ldots, x_n] \).

By [6, Example 13.4.3] \(D_k \) is a simple derivation of the ring \(F[x_1, \ldots, x_k] \) (note that \(F \subseteq \ker D_k \)). Hence the kernel of \(D_k \) in \(F[x_1, \ldots, x_k] \) coincides with \(F \). Therefore the kernel of the derivation \(D_k \) in the ring \(A \) coincides with \(K[x_{k+1}, \ldots, x_n] \).
(2) Let \(T \in C = C_{W_n}(\mathbb{K}) \),

\[
T = f_1 \frac{\partial}{\partial x_1} + \cdots + f_n \frac{\partial}{\partial x_n}.
\]

Then the equality \([T, D_k] = 0\) implies equalities \(D_k(f_1) = T(1) = 0 \) and therefore \(f_1 \in \mathbb{K}[x_{k+1}, \ldots, x_n] \),

\[
D_k(f_2) = x_1 f_2 + x_2 f_1, \quad \ldots, \quad D_k(f_{k}) = x_{k-1} f_k + x_k f_{k-1},
\]

\[
D_k(f_{k+1}) = 0, \quad \ldots, \quad D_k(f_n) = 0.
\]

The last \(n-k \) equalities imply that

\[
f_{k+1} \in \mathbb{K}[x_{k+1}, \ldots, x_n], \quad \ldots, \quad f_n \in \mathbb{K}[x_{k+1}, \ldots, x_n].
\]

If \(f_1 \neq 0 \), then \(f_1 D_k \in C_k \) and \(T - f_1 D_k \in C_k \). Therefore without loss of generality one can assume that \(f_1 = 0 \). But then \(D_k(f_2) = x_1 f_2 \) which is possible only if \(f_2 = 0 \) because \(D_k \) is a simple derivation of the ring \(F[x_1, \ldots, x_k] \). Repeating the arguments one can conclude that

\[
f_3 = \cdots = f_k = 0.
\]

The latter means that

\[
T - f_1 D_k \in \mathbb{K}[x_{k+1}, \ldots, x_n] \frac{\partial}{\partial x_{k+1}} + \cdots + \mathbb{K}[x_{k+1}, \ldots, x_n] \frac{\partial}{\partial x_n}.
\]

Taking into account the relation \(f_1 \in \mathbb{K}[x_{k+1}, \ldots, x_n] \) we get the needed statement. \(\square \)

In order to separate factors of a polynomial which belong to the kernel of a derivation we consider the following notions. Let \(p \in \mathbb{K}[x_1, \ldots, x_n] \) be an irreducible polynomial. A polynomial \(f = f(x_1, \ldots, x_n) \) will be called \(p\)-free if \(f \) is not divisible by any polynomial in \(p \) of positive degree. It can be easily shown that every polynomial \(g \in \mathbb{K}[x_1, \ldots, x_n] \) can be written in the form \(g = g_0 g_1 \), where \(g_0 \) is a \(p \)-free polynomial and \(g_1 = g_1(p) \) is a polynomial of \(p \) (this includes the case \(g_1 = \text{const} \)). The degree in \(p \) of the polynomial \(g_1(p) \) will be called the \(p\)-degree of \(g \) and denoted by \(\deg_p g \).

Let \(p \) and \(q \) be algebraically independent irreducible polynomials of the ring \(\mathbb{K}[x_1, \ldots, x_n] \). A polynomial \(f(x_1, \ldots, x_n) \in \mathbb{K}[x_1, \ldots, x_n] \) will be called \(p-q\)-free if \(f \) is not divisible by any homogeneous polynomial in \(p \) and \(q \) of positive degree. As earlier one can write every polynomial \(g \in \mathbb{K}[x_1, \ldots, x_n] \) in the form \(g_0 g_1 \), where \(g_0 \) is a \(p-q\)-free polynomial and \(g_1 \) is a homogeneous polynomial in \(p, q \). The (total) degree of \(g_1 \) in \(p, q \) will be called the \(p-q\)-degree of \(g \) and denoted by \(\deg_{p-q} g \).

If \(D \) is a derivation on the polynomial ring \(\mathbb{K}[x_1, \ldots, x_n] \), then \(D \) can be written in the form \(h D_0 \), where \(D_0 \) is an irreducible derivation on \(\mathbb{K}[x_1, \ldots, x_n] \) and \(h \in \mathbb{K}[x_1, \ldots, x_n] \). We will call \(D \) \(p\)-free if the polynomial \(h \) is \(p\)-free. We summarize all these remarks in the next statement.
Lemma 2.7. Let $D \in W_n(\mathbb{K})$ be a nonzero derivation. Then there exist unique (up to a factor from \mathbb{K}^*) polynomials $f(p, q)$ and h such that

$$D = f(p, q)hD_0,$$

where D_0 is a reduced derivation, $f(p, q)$ is a homogeneous polynomial in p, q and the polynomial h is p-q-free.

3. CENTRALIZERS OF ELEMENTS IN $W_n(\mathbb{K})$

Theorem 3.1. Let D be a derivation of the ring $\mathbb{K}[x_1, \ldots, x_n]$ with the field of constants $F = \ker D$ in $R = \mathbb{K}(x_1, \ldots, x_n)$ of the form $F = \mathbb{K}(p)$ for some irreducible polynomial p and let $C = C_{W_n(\mathbb{K})}(D)$. Then

1. If $\text{rk}_R C = 1$, then $C = \mathbb{K}[p]D_0$ for some p-free derivation D_0 with $D = f(p)D_0$ for some $f(t) \in \mathbb{K}[t]$;

2. If $\text{rk}_R C \geq 2$, then C is either a Lie algebra of rank k over the ring $\mathbb{K}[p]$ or C contains an ideal I of rank $k-1$ that is a Lie algebra over $\mathbb{K}[p]$ and $C = I + \mathbb{K}[p]S$ for some derivation $S \in C$.

Proof. As noted above the derivation D can be written in the form

$$D = f(p)D_0,$$

where D_0 is a p-free derivation and the polynomial $f \in \mathbb{K}[t]$ is uniquely defined by D up to a nonzero multiplier in \mathbb{K}^*.

1. First let $\text{rk}_R C = 1$. Take an arbitrary element $T \in C$. Then $T = \varphi(p)D_0$ for some rational function $\varphi \in \mathbb{K}(t)$, where $\varphi(p) = g(p)/h(p)$ for some polynomials $g(t), h(t) \in \mathbb{K}[t]$. Without loss of generality one can assume that $\varphi(t) = g(t)/h(t)$ is a reduced fraction. It follows from the equality $T = \varphi(p)D_0$ that $h(p)T = g(p)D_0$. Write D_0 and T in the form

$$D_0 = \sum_{i=1}^n P_i(x_1, \ldots, x_n) \frac{\partial}{\partial x_i}, \quad T = \sum_{j=1}^n Q_j(x_1, \ldots, x_n) \frac{\partial}{\partial x_j},$$

where $P_i, Q_j \in \mathbb{K}[x_1, \ldots, x_n]$. Suppose that the polynomial h is non-constant. Since D_0 is p-free, at least one of the coefficients of D_0 is not a multiple of $h(p)$. Without loss of generality one can assume that P_1 is such a coefficient. Then it follows from the equality $h(p)T = g(p)D_0$ that $hQ_1 = gP_1$. Taking into account the equality $(g(p), h(p)) = 1$ we see that $h|P_1$ which gives a contradiction. Therefore $h \in \mathbb{K}^*$ and

$$\varphi = g(x_1, \ldots, x_n) \in \mathbb{K}[x_1, \ldots, x_n].$$

But then $T = g(p)D_0$ and $C = \mathbb{K}[p]D_0$ since T was arbitrarily chosen.

2. Let $\text{rk}_R C = k \geq 2$. If for each $D_1 \in C$ we have that $D_1(F) = 0$, then it is easy to see that C is a Lie algebra of rank k over the ring $\mathbb{K}[p]$. Note that in this case C may not be a free $\mathbb{K}[p]$-module.
Suppose there exists an element $S \in C$ such that $S(F) \neq 0$. Then $S(p) \neq 0$. Choose S so that the p-degree of the polynomial $S(p)$ is minimal.

We claim that for each $T \in C$ the polynomial $T(p)$ is a multiple of $S(p)$. Indeed suppose $S(p) = v(p)$, $T(p) = u(p)$ for some polynomials $v(t), u(t) \in \mathbb{K}[t]$. Write $u(t) = v(t)q(t) + r(t)$ for some polynomials $q(t), r(t)$, where $\deg r(t) < \deg v(t)$. Then $u(p) = v(p)q(p) + r(p)$ and $T - q(p)S \in C$. Since $(T - q(p)S)(p) = r(p)$ and $\deg p r(p) < \deg p S(p)$, we have by the choice of S that $r(p) = 0$ and $T - q(p)S$ annihilates the kernel $\ker D$. Denote by C_0 the subalgebra of C of all derivations annihilating $\mathbb{K}[p]$. Then as was shown above $T - q(p)S \in C_0$ and $C = C_0 + \mathbb{K}[p]S$. □

Corollary 3.2. If $k = 2$ and $C(F) \neq 0$, then $C = \mathbb{K}[p]D_0 + \mathbb{K}[p]S$ is a free module of rank 2 over $\mathbb{K}[p]$.

Theorem 3.3. Let $D \in W_n(\mathbb{K})$ be a derivation with

$$\text{tr. deg}_{\mathbb{K}} \ker D = 1 \quad \text{and} \quad (\ker R D) \cap A = \mathbb{K}.$$

Then

1) $\ker D = \mathbb{K}(p/q)$ for some irreducible algebraically independent polynomials $p, q \in \mathbb{K}[x_1, \ldots, x_n],$

2) the derivation D is of the form $D = hf(p,q)D_0$ for some irreducible derivation D_0 and homogeneous in p,q polynomial f and a p-q-free polynomial $h,$

3) the centralizer $C = C_{W_n(\mathbb{K})}(D)$ is finite-dimensional over \mathbb{K} being one of the following types:

 (a) $C = \mathbb{K}[p,q]_m hD_0$, where $\mathbb{K}[p,q]_m$ is the linear space of homogeneous in p,q polynomials of degree $m = \deg p,q f$, and in particular $\dim_{\mathbb{K}} C = m + 1$;

 (b) $C = (\mathbb{K}(p/q)D + \mathbb{K}(p/q)D_2 + \cdots + \mathbb{K}(p/q)D_k) \cap W_n(\mathbb{K})$ for some elements D_2, \ldots, D_k, $k \leq n$ in C with D, D_2, \ldots, D_k linearly independent over the field R.

Proof. By Lemma 2.4 we have that $\ker D = \mathbb{K}(p/q)$ for some irreducible algebraically independent over \mathbb{K} polynomials p, q. By Lemma 2.7 there exist unique (up to a nonzero factor from \mathbb{K}) polynomials $f(p,q)$ and h such that $D = f(p,q)hD_0$, where D_0 is a reduced derivation, $f(p,q)$ is a homogeneous polynomial at p,q and the polynomial h is p-q-free.

First, let $\text{rk}_R C = 1$. Then for any $D_1 \in C$ we have that $D_1 = rD_0$ for some $r \in A$ (because D_0 is a reduced derivation). As mentioned above, $r = f_1h_1$ for some homogeneous polynomial $f_1(p,q)$ in p,q and a p-q-free
polynomial h_1. By the choice of D_1 we have that
\[0 = [D, D_1] = [f_1 h_1 D_0, f h D_0]. \]
The last relation implies the equality
\[D_0 (f h / (f_1 h_1)) = 0. \]
By Lemma 2.4 $f h / (f_1 h_1) = u(p, q) / v(p, q)$ for some homogeneous polynomials u, v in p, q with $\deg u = \deg v$. Hence
\[h f v = h_1 f_1 u, \]
where $f v$ and $f_1 u$ are homogeneous in p, q and h, h_1 are p-q-free polynomials. Recall that the factorization of a polynomial as a product of a homogeneous in p, q and a p-q-free polynomial is unique up to a factor from \mathbb{K}^*. Hence $h_1 = h c, c \in \mathbb{K}^*$, and $f v = c^{-1} f_1 u$. Then
\[\deg_{p-q} f = \deg_{p-q} f_1 = m. \]
This implies the relation
\[D = f_1 h_1 D_0 \in \mathbb{K}[p, q]_{m} h D_0. \]
Since D_1 was arbitrarily chosen in C, we have the inclusion
\[C \subseteq \mathbb{K}[p, q]_{m} h D_0. \]
It is easy to see that $\mathbb{K}[p, q]_{m} h D_0 \subseteq C$ and therefore $C = \mathbb{K}[p, q]_{m} h D_0$.

Further, let $\text{rk}_R C = k \geq 2$. Choose a basis D, D_2, \ldots, D_k of C over R. Then by Proposition 2.5
\[C = (\mathbb{K}(p/q) D + \mathbb{K}(p/q) D_2 + \ldots + \mathbb{K}(p/q) D_k) \cap W_n(\mathbb{K}). \]
We will show by induction on k that the centralizer $C = C_{W_n(\mathbb{K})}(D)$ is finite-dimensional over \mathbb{K}.

For $k = 1$ (i.e. in case $\text{rk}_R C = 1$) this was proved above, so we may assume that $k \geq 2$.

Denote for convenience $D_1 = D$. Then every element D_i can be written in the form $D_i = \sum_{j=1}^{n} P_{ij} \frac{\partial}{\partial x_j}$ for some polynomials $P_{ij} \in A, i = 1, \ldots, k$. Take an arbitrary element T of the centralizer C and write down it in the form $T = \sum_{i=1}^{k} \alpha_i D_i$ for some rational functions $\alpha_i \in R$. On the other hand, the same derivation can be written in the standard form $T = \sum_{j=1}^{n} Q_j \frac{\partial}{\partial x_j}$ for some polynomials $Q_1, \ldots, Q_n \in A$. Consider the derivations D_1, \ldots, D_{k-1}, T and denote by (P'_{ij}) the polynomial matrix whose first $k - 1$ rows consist of coefficients of derivations D_1, \ldots, D_{k-1} and the k-th row is of the form (Q_1, \ldots, Q_n), i.e. $P'_{ij} = P_{ij}$ and $P'_{kj} = Q_j$ for $i = 1, \ldots, k - 1, j = 1, \ldots, n$.
Consider the minor $\delta = \delta_{i_1, \ldots, i_k}$ on arbitrarily chosen columns i_1, \ldots, i_k of the matrix (P_{ij}) and the analogous minor $\mu = \mu_{i_1, \ldots, i_k}$ on the same columns of the matrix (P'_{ij}). Since $T = \sum_{i=1}^{k} \alpha_i D_i$, we have obviously the equality $\mu = \alpha_k \delta$.

Repeating the arguments from the proof of Lemma 2.4 one can show that there exist homogeneous polynomials u, v in p, q with $\deg_{p-q} u = \deg_{p-q} v$ such that $\alpha_k = u/v$. It follows from the equality $\mu = \alpha_k \delta$ (written in the form $v\mu = u\delta$) that $\deg_{p-q} \mu = \deg_{p-q} \delta$. Moreover, these polynomials have the same $p-q$-free part up to a factor from \mathbb{K}^* because of the equality $v\mu = u\delta$ mentioned above. We can assume that $p-q$-free parts of u and v are identical, denote their common value by h. Let M_1, \ldots, M_s be all the $(k \times k)$-minors of the matrix (P'_{ij}) enumerated in an arbitrary way, so $s = \binom{n}{k}$. Then they are polynomials from A. Let $m = m_i$ be the p-q-degree of the minor M_i and f_i the corresponding homogeneous polynomial which is a $p-q$-part of the minor M_i. We assign to the derivation T the sequence of homogeneous polynomials $\theta(T) = (f_1, \ldots, f_s)$ of degrees m_1, \ldots, m_s correspondingly. Consider the map

$$\theta : C \rightarrow N = \mathbb{K}[p, q]_{m_1} \times \ldots \times \mathbb{K}[p, q]_{m_s},$$

where m_i are p-q-degree of the minor $M_i, i = 1, \ldots, s$. The mapping θ is \mathbb{K}-linear and acts from C to N, note that $\dim_{\mathbb{K}} N < \infty$. Obviously $\ker \theta$ consists of such derivations T for which all the minors of order k are zeroes. But then

$$T \in (\mathbb{K}(p/q) D_1 + \ldots + \mathbb{K}(p/q) D_{k-1}) \cap W_n(\mathbb{K}) = C_{k-1}.$$

Therefore, $\dim C/C_{k-1} < \infty$. By inductive assumption the subspace C_{k-1} is finite dimensional over the field \mathbb{K}. Therefore $\dim_{\mathbb{K}} C < \infty$. □

4. CENTRALIZERS OF SOME LINEAR DERIVATIONS

A derivation $D = \sum_{i=1}^{n} P_i \frac{\partial}{\partial x_i}$ will be called linear if all the polynomial P_i are linear forms in n variables, i.e. $P_i = \sum_{j=1}^{n} a_{ij} x_j, a_{ij} \in \mathbb{K}$. The linear derivation $D = \sum_{i,j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_j}$ is determined by the square matrix (a_{ij}) of order n and if $D' = \sum_{i,j=1}^{n} b_{ij} x_j \frac{\partial}{\partial x_j}$, then $[D, D']$ is linear and defined by the matrix $(c_{ij}) = [(a_{ij}), (b_{ij})]$. Therefore all the linear derivation form a subalgebra of $W_n(\mathbb{K})$ isomorphic to the general linear algebra $gl_n(\mathbb{K})$, which (for simplicity) will also be denoted by $gl_n(\mathbb{K})$.
Let $D = \sum_{i,j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_j} \in W_n(\mathbb{K})$ be a linear derivation. Then one can consider two centralizers:

$$C_0 = C_{gl_n(\mathbb{K})}(D) \quad \text{and} \quad C = C_{W_n(\mathbb{K})}(D),$$

Evidently, $C_0 \subseteq C$. The structure of the centralizer C_0 is well-known because it consists of all linear derivations defined by the matrices commuting with the matrix (a_{ij}). How to find the centralizer of a given matrix (a_{ij}) is a classical problem of linear algebra. It was solved many years ago (see, e.g. [2, Chapter VIII, §2]). Therefore it is interesting to study the case when $C = C_0$ because we will then have a complete description of the centralizer $C = C_{W_n(\mathbb{K})}(D)$.

In Theorem 4.2 we will present a necessary condition and a sufficient condition for a linear derivation D to satisfy the equality

$$C_{W_n(\mathbb{K})}(D) = C_{gl_n(\mathbb{K})}(D)$$

(unfortunately those conditions do not coincide).

Lemma 4.1. Let $D = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i}$ and $T = \sum_{i=1}^{n} g_i \frac{\partial}{\partial x_i}$ be two elements of $W_n(\mathbb{K})$, where $f_i = f_i(x_1, \ldots, x_n)$, $g_i = g_i(x_1, \ldots, x_n) \in \mathbb{K}[x_1, \ldots, x_n]$. Then the derivations D and T commute if and only if $D(g_i) = T(f_i)$ for all $i = 1, \ldots, n$.

Proof. It is obvious that $DT = TD$ if and only if $DT(x_i) = TD(x_i)$ for all $i = 1, \ldots, n$. But $T(x_i) = g_i(x_1, \ldots, x_n)$ and $D(x_i) = f_i(x_1, \ldots, x_n)$ for all $i = 1, \ldots, n$. Hence $D(g_i) = T(f_i)$. \[\square\]

Theorem 4.2. Let $D = \sum_{i,j=1}^{n} a_{ij} x_j \frac{\partial}{\partial x_i}$ be a linear derivation of the polynomial ring $K[x_1, \ldots, x_n]$, and $\lambda_1, \ldots, \lambda_n$ the eigenvalues of the matrix (a_{ij}). Then the following statements hold:

(1) If the eigenvalues $\lambda_1, \ldots, \lambda_n$ are linearly independent over \mathbb{Z}, then $C_{W_n(\mathbb{K})}(D) = C_{gl_n(\mathbb{K})}(D)$.

(2) If $C_{W_n(\mathbb{K})}(D) = C_{gl_n(\mathbb{K})}(D)$, then the eigenvalues $\lambda_1, \ldots, \lambda_n$ are linearly independent over $\mathbb{N} \cup \{0\}$.

Proof. (1) Suppose that the eigenvalues $\lambda_1, \ldots, \lambda_n$ of the matrix (a_{ij}) are linearly independent over \mathbb{Z}. Take any $T \in C_{W_n(\mathbb{K})}(D)$,

$$T = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i},$$
where $f_i \in A = \mathbb{K}[x_1, \ldots, x_n]$. Without loss of generality one may assume that the matrix (a_{ij}) is diagonal of the form

$$(a_{ij}) = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}$$

(the eigenvalues $\lambda_1, \ldots, \lambda_n$ are pairwise distinct, so the matrix (a_{ij}) is diagonalizable). In view of this assumption the derivation D is of the form

$$D = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i}.$$

Evidently, $D(f_i) = T(\lambda x_i) = \lambda_i f_i$, i.e. the coefficients f_i of the derivation T are Darboux polynomials for D with cofactors λ_i, $i = 1, \ldots, n$. Moreover, $D(x_i) = \lambda_i x_i$, $i = 1, \ldots, n$. But then

$$D(f_i/x_i) = \frac{D(f_i)x_i - f_iD(x_i)}{x_i^2} = 0, \quad i = 1, \ldots, n,$$

i.e. the rational function f_i/x_i belongs to the kernel of D, $i = 1, \ldots, n$. Since all the eigenvalues $\lambda_1, \ldots, \lambda_n$ are linearly independent over \mathbb{Z} it follows from [6, Theorem 10.1.2] that $f_i/x_i = \mu_i \in \mathbb{K}$, $i = 1, \ldots, n$. The latter means that

$$T = \sum_{i=1}^{n} \mu_i x_i \frac{\partial}{\partial x_i} \in gl_n(\mathbb{K})$$

and therefore $C_{W_n(\mathbb{K})}(D) = C_{gl_n(\mathbb{K})}(D)$.

(2) Suppose that

$$C_{W_n(\mathbb{K})}(D) = C_{gl_n(\mathbb{K})}(D).$$

This implies that $\ker D = \mathbb{K}$. Indeed, if $h \in \ker D \setminus \mathbb{K}$, then $hD \in C_{W_n(\mathbb{K})}(D)$ and the derivation hD is obviously nonlinear. Hence by [6, Theorem 10.1.1] the eigenvalues $\lambda_1, \ldots, \lambda_n$ are linearly independent over \mathbb{N}_0. \hfill \square

Remark 4.3. Note that the derivation

$$D = x_1 \frac{\partial}{\partial x_1} + 2x_2 \frac{\partial}{\partial x_2}$$

on the polynomial ring $\mathbb{K}[x_1, x_2]$ with eigenvalues 1, 2 has nonlinear elements in its centralizer in $W_2(\mathbb{K})$, for example $x_1^2 \frac{\partial}{\partial x_2}$. So the condition (2) is not sufficient.
REFERENCES

Received: November 11, 2021, accepted: November 29, 2021.

Chapovskyi Y.
DEPARTMENT OF ALGEBRA AND COMPUTER MATHEMATICS, FACULTY OF MECHANICS AND MATHEMATICS, KYIV TARAS SHEVCHENKO UNIVERSITY, 64, VOLODYMYRSKA STREET, 01033 KYIV, UKRAINE
Email: safemacc@gmail.com

Efimov D.
DEPARTMENT OF ALGEBRA AND COMPUTER MATHEMATICS, FACULTY OF MECHANICS AND MATHEMATICS, KYIV TARAS SHEVCHENKO UNIVERSITY, 64, VOLODYMYRSKA STREET, 01033 KYIV, UKRAINE
Email: d_efimov@knu.ua

Petravchuk A.
DEPARTMENT OF ALGEBRA AND COMPUTER MATHEMATICS, FACULTY OF MECHANICS AND MATHEMATICS, KYIV TARAS SHEVCHENKO UNIVERSITY, 64, VOLODYMYRSKA STREET, 01033 KYIV, UKRAINE
Email: apetrav@gmail.com
ORCID: 0000-0003-0371-7771