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Generalized φ(Ric)-vector fields in
special pseudo-Riemannian spaces

A. Savchenko, N. Vashpanova, N. Vasylieva

Abstract. The paper treats pseudo-Riemannian spaces admitting gene-
ralized φ(Ric)-vector fields. We study conditions for the existence of such
vector fields in conformally flat, equidistant, reducible and Kählerian pseudo-
Riemannian spaces. The obtained results can be applied for the construction
of generalized φ(Ric)-vector fields distinct from φ(Ric)-vector fields. The
research is carried out locally without limitations imposed on the sign of the
metric tensor.

Анотація.Досліджуються псевдоріманові простори, які допускають уза-
гальнені φ(Ric)-векторні поля. Вивчені умови існування таких векторних
полів в конформно пласких, еквідістантних, звідних та келерових псевдо-
ріманових просторах. Отримані результати можуть бути застосовані до
побудови прикладів узагальнено φ(Ric)-векторних полів відмінних від
φ(Ric)-векторних полів. Дослідження ведуться локально і без обмежень
на знак метричного тензора.

1. INTRODUCTION
Let Vn be a pseudo-Riemannian space with a metric tensor gij . Taking

into account algebraic reasoning, the papers [4, 5] introduce φ(Ric)-vector
fields. Namely, those are vector fields corresponding to the equations:

φi,j = sRij , (1.1)
where Rij is the Ricci tensor, s is some constant, and comma ”,” designates
covariant derivative by the connection Vn.
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Some geometric properties of these vector fields were considered by I. Hin-
terleitner and V. Kiosak [4, 5]. They studied conformally flat pseudo-
Riemannian spaces and spaces admitting φ(Ric) and concircular fields si-
multaneously.

The concept of φ(Ric)-vector fields can be extended by introducing the
so-called generalized φ(Ric)-vector fields. Recall that a φ(Ric)-vector fields
requires s ” const, while for generalized φ(Ric)-vector fields s is not nec-
essarily constant but some invariant.

2. GENERALIZED φ(Ric)-VECTOR FIELDS IN CONFORMALLY-FLAT SPACES
For the generalized fields the integrability conditions of equations (1.1)

can be written as follows:
φαR

α
ijk = s(Rij,k ´Rik,j) + skRij ´ sjRik,

where Rhijk is the Riemann tensor chosen so that Rhijk = gαhRαijk, gij are
elements of inverse matrix gij , and sk = s,k.

Taking into account properties of the Riemann tensor Rhijk, we can write
down the following expression:

φαR
α
ijk = sRαijk,α + skRij ´ sjRik. (2.1)

Wrapping (2.1), we get another expression:
φαR

α
k = s

2R,k + skR ´ sαR
α
k ,

where R is the scalar curvature and Rhi = Rαig
αh.

A conformally flat space is a pseudo-Riemannian space Vn satisfying the
following conditions, [24]:

Rhijk = Phkgij ´ Phjgik + Pijghk ´ Pikghj , (2.2)
Pij,k ´ Pik,j = 0, (2.3)

where
Pij =

1
n´2

(
Rij ´ 1

2(n´1)Rgij
)
. (2.4)

The equation (2.2) implies that
φαR

α
ijk = φαP

α
k gij ´ φαP

α
j gik + Pijφk ´ Pikφj , (2.5)

where
P hi = gαhPiα.

Differentiating (2.2), wrapping it by indices h and l, and taking into ac-
count (2.3), we obtain the following:

Rαijk,α = Pαk,αgij ´ Pαj,αgik,

which is the same as
Rαijk,α = P,kgij ´ P,jgik, (2.6)
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where
Pαβg

αβ = P.

Substituting (2.5) and (2.6) into (2.1), we get
(φαP

α
k ´ sP,k) gij ´ (

φαP
α
j ´ sP,j

)
gik+

+ φkPij ´ φjPik = s,kRij ´ s,jRik.

Taking into account (2.4) and grouping it we obtain
1
τkgij´ 1

τjgik+
2
τkRij´ 2

τjRik = 0, (2.7)
where

1
τi =

1
n´2φαR

α
i ´ s

2(n´1)R,i ´ R
(n´1)(n´2)φi,

2
τi =

1
n´2φi ´ s,i.

Finally, wrapping (2.7) we get

(n´ 1)
1
τk +R

2
τk´ 2

ταR
α
k = 0.

Let us multiply (2.7) by a vector 2
τi = gαi

2
τα and wrap it by index i:

(n´ 2)
(
1
τk

2
τj´ 1

τj
2
τ
k

)
= 0.

If 2
τ i ‰ 0, then we can choose a vector ξi so that ξα 2

τα = 1. Then
1
τi = ρ

2
τi, (2.8)

where ρ is some invariant.
After substitution of (2.8) the equation (2.7) reduces to the following

one:
2
τk(Rij + ρgij)´ 2

τj(Rik + ρgik) = 0. (2.9)
Multiplying (2.9) by ξk we obtain

Rij + ρgij´ 2
τj(Rαi + ρgαi)ξ

α = 0. (2.10)
Due to the symmetry of tensors (2.10) can be re-written as follows:

Rij + ρgij = uiuj , (2.11)
which implies

ρ = 1
nuαu

α ´ R
n .

Hence we get from (2.11) that
Rij ´ R

n gij = uiuj ´ 1
nuαu

αgij ,
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which is equivalent to the identity
Eij = uiuj ´ 1

nuαu
αgij , (2.12)

where Eij = Rij ´ R
n gij is the Einstein tensor.

Equations (2.12) are characteristic for quasi-Einstein spaces, [13, 14].
Also the equations (2.11) under conditions (2.2) led us to the spaces of
quasi-constant curvature, [10].

Consider the case when 2
τi = 0, that is

s,i =
1

n´2φi.

Then the equation (2.8) implies that 1
τi = 0, which means that

1
n´2φαR

α
i ´ s

2(n´1)R,i ´ R
(n´1)(n´2)φi = 0.

Thus, we get the following theorem:

Theorem 2.1. If a conformally flat pseudo-Riemannian space Vn admits
a generalized φ(Ric)-vector field such that φi ‰ (n ´ 2)s,i, then this space
is a quasi-Einstein space of quasi-constant curvature.

Note, that if in the equation (2.12) a vector ui is gradient, namely
ui = u,i = Biu,

then this pseudo-Riemannian space is a subprojective Kagan space, [7]. It
is well-known that subprojective Kagan spaces are equidistant. Therefore
in the subsequent sections we will consider equidistant spaces admitting
generalized φ(Ric)-vector fields.

3. GENERALIZED φ(Ric)-VECTOR SPACES IN EQUIDISTANT SPACES
A pseudo-Riemannian space Vn with a metric tensor gij is called equidis-

tant whenever it admits a vector field ψi ‰ 0 corresponding to equations
ψi,j = τgij , (3.1)

where τ is some invariant. For τ ‰ 0, the space Vn is called an equidistant
space of main type, while for τ = 0 it is a space of special type, [24,26].

Following by K. Yano we will say that a vector field complying with the
conditions (3.1) is concircular.

Integrability conditions for the main equations (3.1) can be written as
follows:

ψαR
α
ijk = gijτ,k ´ gikτ,j . (3.2)

They imply that
τ,i =

1

n´ 1
ψαR

α
i . (3.3)
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Notice that the set of equations (3.1) and (3.3) is closed. It is a system
of linear differential equations in covariant derivatives of the first order of
Cauchy type with coefficients unequivocally defined by the space Vn, with
respect to an unknown vector ψi and an invariant τ .

Equidistant spaces constitute an important part of theory of geodesic
mappings. They are crucial in the theory of modelling with preservation of
geodesic lines, [11].

The integrability conditions (3.1) imply that
τ,k = Bψk, (3.4)

where B is some invariant. Taking into account (3.2) and (3.3) we then get
ψαR

α
ijk = B(ψkgij ´ ψjgik), (3.5)
ψαR

α
i = (n´ 1)Bψi.

Differentiating (3.4) and taking into account (3.1) we obtain that
τRhijk + ψαR

α
ijk,h = B,h(ψkgij ´ ψjgik) +Bτ(ghkgij ´ gjhgik). (3.6)

Cycle (3.6) by indices h, j, k:
B,h(ψkgij ´ ψjgik) +B,j(ψhgik ´ ψkgih) +B,k(ψjgih ´ ψhgij) = 0,

and wrap by indices i, j:
B,hψk ´B,kψh = 0.

Multiplying the latter identity by the vector ξk chosen so that ψαξα = 1
and B,αξα = A, we obtain that

B,h = Aψh.

Then equation (3.6) transforms into the following one:
τRhijk + ψαR

α
ijk,h = A(ψhψkgij ´ ψhψjgik) +Bτ(ghkgij ´ gjhgik).

Wrapping it by indices h, k we get that

τRij + ψαRβjiα,β = (Aψαψ
α + 3Bτ)gij ´Aψiψj . (3.7)

Multiplying further (3.7) by an invariant s and taking into account (2.1)
we obtain:

ψαφβR
β
jiα ´ ψαsαR

β
ji + ψαRαjsi =

= s(Aψαψ
α + 3Bτ)gij ´Asψiψj ´ τsRij .

(3.8)

Let us rewrite (3.5) as follows:
ψαRkjiα = B(ψkgij ´ ψjgik).
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Multiplying the latter identity by φk, then wrapping by index k, and further
substituting the result into (3.8) we will get:

Bψαφ
αgij ´ ψjψi ´ ψαsαRji + ψαRαjsi =

= s(Aψαψ
α + 3Bτ)gij ´Asψiψj ´ τsRij .

(3.9)

Alternating (3.9) by indices i and j we obtain
ψj ((n´ 1)Bsi ´ φi) ´ ψi ((n´ 1)Bsj ´ φj) = 0,

which implies
(n´ 1)Bsi = φi + νψi, (3.10)

where ν is some invariant.
Then (3.9) reduces to the following identity:
(Bψαφ

α ´ sAψαψ
α ´ 3sBτ) gij = (ψαsα ´ τs)Rij ´(As´ν)ψiψj . (3.11)

Wrapping (3.11), we get that
Bψαφ

α ´ sAψαψ
α ´ 3sBτ = R

n (ψαsα ´ τs) ´ ψαψα

n (As´ ν).

Then (3.11) can be rewritten as follows:

(ψαsα ´ τs)
(
Rij ´ R

n gij
) ´ (As´ ν)

(
ψαψα

n gij ´ ψiψj

)
= 0,

which is the same as
3
τEij+

4
τ
(
ψiψj ´ ψαψα

n gij

)
= 0, (3.12)

where 3
τ = ψαsα ´ τs,

4
τ = As´ ν.

Thus, we get the following result:

Theorem 3.1. If a equidistant pseudo-Riemannian space Vn admits gene-
ralized φ(Ric)-vector fields, then in this space the conditions (3.10) hold for
a vector φi and conditions (3.12) for the Einstein tensor.

Theorem 3.1 agrees well with the results of [12, 17, 18], when the latter
are widened by application of the concept of the generalized φ(Ric)-vector
fields.

4. GENERALIZED φ(Ric)-VECTOR FIELDS IN REDUCIBLE FIELDS
A pseudo-Riemannian space Vn with a metric tensor gij is called lo-

cally reducible, whenever at each point M of Vn there are local coordinates
y1, y2, . . . , yn in which the main matrix is of the following form:

I = gpq(y
r)dypdyq + gσµ(y

ν)dyσdyµ, (4.1)
(p, q, r = 1, 2, . . . ,m, σ, µ, ν = m+ 1,m+ 2, . . . , n),
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where gpq depend only on the variables y1, y2, . . . , ym, and gσµ depends only
on ym+1, ym+2, . . . , yn.

In what follows, a locally reducible space will be called reducible. Thus,
a reducible pseudo-Riemannian space Vn(gij), by definition, is a product of
two pseudo-Riemannian spaces

1
Vm(gpq) and

2
Vn´m(gσµ):

gij =




gpq | 0
´ ´
0 | gσµ




Each of
1
Vm and

2
Vn´m can be either reducible or not whence (4.1) can

be re-written as follows:

ds2 =
rÿ

k=1

ds2k (r ą 1),

where ds2k is the quadratic form of Vmk
, (m1 +m2 + . . .+mn = n).

For a given pseudo-Riemannian space Vn a number r can take diffe-
rent values. The maximal value of r is called the mobility of a pseudo-
Riemannian space in respect to its reduction.

A pseudo-Riemannian space Vn is reducible if and only if it contains a
symmetric tensor aij = cgij (in case of some constant c), which complies to
the following conditions:

aiαa
α
j = aij , (4.2)

aij,k = 0, (4.3)
where aij = aαjg

αi.
Equations (4.2) and (4.3) is an invariant (with respect to the given

local coordinates) condition, being necessary and sufficient for a pseudo-
Riemannian space Vn to be reducible. In the above-mentioned form it was
formulated by P. A. Shirokov [23].

A tensor aij , that complies to condition (4.2), is called idempotent, while
a tensor aij that complies to (4.3) is a covariant constant tensor.

The requirement of idempotency can be replaced by the requirement that
the matrix of a tensor aij should have simple elementary divisors and real
roots (as was proved by G. Kruchkovich [20]). A similar formulation of this
characteristic can be found as an exercise in the book of L. P. Eisenhart
“Riemannian geometry”, [2], however without an addition on the real roots.
Without that requirement, it is easy to see that the characteristic is wrong.

Taking into account the Ricci identity, integrability conditions for the
equation (4.3) can be formulated as follows

aαiR
α
jkl + aαjR

α
ikl = 0. (4.4)
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Cycling the latter by (i, k, l), we obtain
aαiR

α
jkl + aαkR

α
jli + aαlR

α
jik = 0.

Wrapping by indices (j, k), we can write down the following expression
aαiR

α
l ´ aαlR

α
i = 0,

where
Rij = Rαjg

αi.

Tensors aij and bij satisfying the following identity
aαi bαj = aαj bαi,

are said to commute, [1].

Theorem 4.1. Each reducible pseudo-Riemannian space Vn contains an
idempotent tensor which commutes with the Ricci tensor of Vn.

Differential extensions of (4.4) can be written as follows:
aαiR

α
jkl,m + aαjR

α
ikl,m = 0.

Wrapping the latter by indices l and m and taking into account (2.1)
and (4.4), we get

aαi sαRjk ´ sja
α
i Rαk + aαj sαRik ´ sia

α
j Rαk = 0. (4.5)

Alternating by indices j and k we obtain
aαi sαRjk ´ aαksαRji ´ sia

α
j Rαk + ska

α
j Rαi = 0.

Let us re-assign indices i and k:
aαi sαRkj ´ aαj sαRki ´ sia

α
kRαj + sja

α
kRαi = 0. (4.6)

Adding up the equations (4.6) and (4.5), we arrive at
aαi sαRjk ´ sia

α
j Rαk = 0.

If si ı 0, then
aαj Rαk = uRjk, (4.7)

where u is some invariant.
Multiplying (4.7) by aαi = aαig

αj and taking into account (4.2) and (4.7)
we get

aαj Rαk = u2Rjk. (4.8)
Substracting (4.8) out of (4.7) we can see that u = 0 or u = 1 and

aαi sα = usi. (4.9)
Thus, we have proved the following theorem:
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Theorem 4.2. In a reducible pseudo-Riemannian space admitting a gene-
ralized φ(Ric)-vector field conditions (4.7) and (4.9) hold true with u = 0
or u = 1.

5. GENERALIZED φ(Ric)-VECTOR FIELDS IN KÄHLERIAN SPACES
A Kähler space Kn, (n = 2N), is a pseudo-Riemannian space with a

metric tensor gij(x) containing structure F hi (x), which satisfies the following
condition, [3, 6, 19]:

F hαF
α
i = ´δhi ; F(ij) = 0; F hi,j = 0, (5.1)

where Fij ” giαF
α
j , comma denotes a covariant derivative by the connection

of Kn, and brackets (ij) mean symmetrizing by indices i, j.
Notice that Kähler spaces were introduced by P. A. Shirokov under the

name of A-spaces. Later these spaces were studied by E. Kähler and in
literature they are basically known as Kähler spaces, [6, 8].

For convenience define an operation of conjugation in Kn as follows:

A ...
ī... ” A ...

α...F
α
i , B ī...

... ” Bα...
...F

i
α, (5.2)

where A and B are some tensors of any valence. The equations (5.1)
and (5.2) imply the following properties:

A¯̄i = ´Ai, B
¯̄i = ´Bi,

AᾱB
α = AαB

ᾱ, AᾱB
ᾱ = ´AαBα,

(Aī), j = Aī , j , (B ī), j = B ī
, j .

A metric tensor and Kronecker symbols satisfy the conditions:

gī j̄ = gij , gīj = ´gij̄ , δhī = δh̄i = F hi , δh̄ī = ´δhi .
But the well-known identities, Ricci tensor and Riemannian tensor have the
following additional properties:

Rh̄ījk = Rhijk; Rαᾱjk = 2Rjk̄, Rī j̄ = Rij .

The inner objects of Kn are objects defined by the metric tensor gij and
the structure F hi .

Consider Kähler spaces admitting generalized φ(Ric)-vector fields. Ap-
plying the operation of conjugation by indices j and k to (2.1) we get

φαR
α
ijk = sRαijk,α + sk̄Rij̄ ´ sj̄Rik̄. (5.3)

Subtracting (5.3) out of (2.1) gives:
skRij ´ sjRik ´ sk̄Rij̄ + sj̄Rik̄ = 0. (5.4)
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Wrapping further by indices i and j, we obtain

Rsk = 2sαR
α
k .

Finally, mltiplying (5.4) by a vector sk and wrapping by an index k we get
the following identity:

sαsαRij =
R
2

(
sisj + sj̄sī

)
. (5.5)

Thus, we proved the following theorem:

Theorem 5.1. If a Kähler space admits generalized φ(Ric)-vector fields,
then the conditions (5.5) hold true.

Note that in the case defined by (5.5) the important role is played by a
vector si, and, this is the reason why they do carry information on genera-
lized φ(Ric)-vector fields for the case when si is not constant.

6. CONCLUSIONS
The notion of generalized φ(Ric)-vector field extends the concept of the

class of φ(Ric)-vector fields in pseudo-Riemannian spaces. This generaliza-
tion is achieved by omitting the requirement imposed on the coefficient of
proportionality which now is not required to be constant. The paper [25]
studies non-trivial geodesic mappings of pseudo-Riemannian spaces admit-
ting φ(Ric)-vector fields.

Special pseudo-Riemannian spaces admitting generalized φ(Ric)-vector
fields require future study. In particular it is necessary to understand which
properties of such spaces are shared with spaces admitting φ(Ric)-vector
fields and which properties are new. Those spaces can find applications in
other fields of mathematics, [9, 21,22,27].

In the present paper we found necessary conditions on Ricci tensor
for conformally flat, equidistant, reducible and Kähler pseudo-Riemannian
spaces to admit generalized φ(Ric)-vector fields. It turns out that in
all the cases those pseudo-Riemannian spaces are quasi-Einstein pseudo-
Riemannian spaces. Geodesic and conformal mappings of these spaces are
studied in [12,15,16]. The obtained results can be applied for the construc-
tion and further research on geometric properties of these spaces.
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