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Generalized ¢(Ric)-vector fields in
special pseudo-Riemannian spaces

A. Savchenko, N. Vashpanova, N. Vasylieva

Abstract. The paper treats pseudo-Riemannian spaces admitting gene-
ralized @(Ric)-vector fields. We study conditions for the existence of such
vector fields in conformally flat, equidistant, reducible and Kéhlerian pseudo-
Riemannian spaces. The obtained results can be applied for the construction
of generalized @(Ric)-vector fields distinct from ¢(Ric)-vector fields. The
research is carried out locally without limitations imposed on the sign of the
metric tensor.

Amnotranis. JociimKyoTsbes IceBIopiMatoBi IPOCTOPH, sIKi JIOIYCKAIOTH y3a-
ranbHeH] ¢(Ric)-BekTopHi nos1si. BuBueni yMOBHU iCHyBaHHsI TAKMX BEKTOPHUX
MOJ/TiB B KOH(MOPMHO TIACKHX, €KBiTICTAHTHUX, 3BITHIX Ta KEJIEPOBUX TICEBIIO-
pimanoBux npocropax. OrpuMani pe3ybTaTu MOXKYTb OyTH 3aCTOCOBaHI 10
mo0yIOBY IPUKJIAAIB y3arajabHeHo ¢(Ric)-BeKTOPHUX MOJIB BiAMIHHUX Bif
»(Ric)-BekTOpHUX TOJIB. JIOCTI/PKEHHS By THCA JIOKATBHO 1 663 00MEKEHD
Ha 3HAK METPUIHOTO TEH30DA.

1. INTRODUCTION

Let V,, be a pseudo-Riemannian space with a metric tensor g;;. Taking
into account algebraic reasoning, the papers [4, 5] introduce ¢ (Ric)-vector
fields. Namely, those are vector fields corresponding to the equations:

i j = sRyj, (1.1)

where R;; is the Ricci tensor, s is some constant, and comma ”,” designates
covariant derivative by the connection V.
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Some geometric properties of these vector fields were considered by I. Hin-
terleitner and V. Kiosak [4,5]. They studied conformally flat pseudo-
Riemannian spaces and spaces admitting ¢(Ric) and concircular fields si-
multaneously.

The concept of ¢(Ric)-vector fields can be extended by introducing the
so-called generalized ¢(Ric)-vector fields. Recall that a p(Ric)-vector fields
requires s = const, while for generalized ¢(Ric)-vector fields s is not nec-
essarily constant but some invariant.

2. GENERALIZED ¢(Ric)-VECTOR FIELDS IN CONFORMALLY-FLAT SPACES

For the generalized fields the integrability conditions of equations (1.1)
can be written as follows:

Paltiy = s(Rijr — Rikj) + siRij — sj Ry,
where R?jk is the Riemann tensor chosen so that R?jk = go‘hRm-jk, g% are
elements of inverse matrix g;;, and s = s .

Taking into account properties of the Riemann tensor R
down the following expression:

Pl = sRijk o + skRij — 55 Ri. (2.1)
Wrapping (2.1), we get another expression:

Yoy = SR+ spR — so RE,

h

ijks We can write

where R is the scalar curvature and th = ngo‘h.
A conformally flat space is a pseudo-Riemannian space V,, satisfying the
following conditions, [24]:

Rhijk = Phk9ij — Prjgik + Pijgnk — Pikgny (2.2)
P — Py ; =0,

where

Pij = ;15 (Rij — ﬁRgi]’)‘ (2.4)
The equation (2.2) implies that

Caliin = oy 9ij — 0oy gik + Pijor — Py, (2.5)

where

Pih = gahf)iow

Differentiating (2.2), wrapping it by indices h and [, and taking into ac-
count (2.3), we obtain the following:
R%k,a = Pk?faglj - Pjo,tozgika
which is the same as
Rk o = Prgij — Pjgik, (2.6)
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where
Popg™® = P.
Substituting (2.5) and (2.6) into (2.1), we get
(o Py — sPy) gij — (%Pja — sP;) gi+
+ ¢rPij — piPik = s Rij — 5 5 Rig.

Taking into account (2.4) and grouping it we obtain

1 1 2 2

Tk9ij— Tigik+ Thlij— TjRik, = 0, (2.7)

where

7= Lo RY — sty i — (n,lﬁn,g) ©i,
Ti = 7 2%i — Sa-
Finally, wrapping (2.7) we get
(n—1) T4 + R 71— 7 RY = 0.
Let us multiply (2.7) by a vector F— g™ 72'a and wrap it by index i:

(n—2) (71—k72—j_71-j 72'k> :0

If %Z # 0, then we can choose a vector & so that £ %a = 1. Then

Ti=pt, (2.8)

where p is some invariant.
After substitution of (2.8) the equation (2.7) reduces to the following
one:

2 2
Tk(Rij + pgij)— 7j(Rik + pgir) = 0. (2.9)
Multiplying (2.9) by &* we obtain
2
Rij + pgij— 7j(Rai + pgai)§* = 0. (2.10)
Due to the symmetry of tensors (2.10) can be re-written as follows:
Rij + pgij = uiwj, (2.11)
which implies
p= %uauo‘ - %.

Hence we get from (2.11) that

R _ 1 o
Rij — 59ij = uiug — 5 uau” gij,
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which is equivalent to the identity
Eij = Uiy — %uauagij, (2.12)
where E;; = R;j — %gij is the Einstein tensor.
Equations (2.12) are characteristic for quasi-Einstein spaces, [13, 14].

Also the equations (2.11) under conditions (2.2) led us to the spaces of
quasi-constant curvature, [10].

. 2 .
Consider the case when 7; = 0, that is

Then the equation (2.8) implies that 71'1 = 0, which means that

1 fo' s R _
s Palty — 2(n—1)R7i T hD)(n-2)¥i = 0.

Thus, we get the following theorem:

Theorem 2.1. If a conformally flat pseudo-Riemannian space V,, admits
a generalized o(Ric)-vector field such that p; # (n — 2)s, then this space
is a quasi-Einstein space of quasi-constant curvature.

Note, that if in the equation (2.12) a vector u; is gradient, namely
U; = Uz = diu,

then this pseudo-Riemannian space is a subprojective Kagan space, [7]. It
is well-known that subprojective Kagan spaces are equidistant. Therefore
in the subsequent sections we will consider equidistant spaces admitting
generalized p(Ric)-vector fields.

3. GENERALIZED ¢(Ric)-VECTOR SPACES IN EQUIDISTANT SPACES

A pseudo-Riemannian space V,, with a metric tensor g;; is called equidis-
tant whenever it admits a vector field ¥; # 0 corresponding to equations

Yij = Tgij, (3.1)
where 7 is some invariant. For 7 # 0, the space V,, is called an equidistant
space of main type, while for 7 = 0 it is a space of special type, [24,26].

Following by K. Yano we will say that a vector field complying with the
conditions (3.1) is concircular.

Integrability conditions for the main equations (3.1) can be written as
follows:

Vo R, = 9ij Tk — GikT,j- (3.2)

They imply that

1
n—1

Yo R (3.3)

T; =

)
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Notice that the set of equations (3.1) and (3.3) is closed. It is a system
of linear differential equations in covariant derivatives of the first order of
Cauchy type with coefficients unequivocally defined by the space V,,, with
respect to an unknown vector ¢; and an invariant 7.

Equidistant spaces constitute an important part of theory of geodesic
mappings. They are crucial in the theory of modelling with preservation of
geodesic lines, [11].

The integrability conditions (3.1) imply that

Tk = By, (3.4)
where B is some invariant. Taking into account (3.2) and (3.3) we then get
¢C¥R?jk = B(Yrgij — Vjgik), (3.5)

YaR = (n— 1)By;.
Differentiating (3.4) and taking into account (3.1) we obtain that
T Rpijk + Yo Ry p = Br(Yrgij — Yigik) + BT(9nkgij — 9jngik)-  (3.6)
Cycle (3.6) by indices h, j, k:
B n(Vrgij — ¥i9ik) + Bj(¥ngik — Yrgin) + B r(¥j9in — ¥ngij) = 0,
and wrap by indices i, j:
B ppr — Byyp = 0.

Multiplying the latter identity by the vector £¥ chosen so that 1, = 1
and B ,{“ = A, we obtain that

B, = Ay,
Then equation (3.6) transforms into the following one:
T Rpijk + Yo R p = A(WnYrgi; — Ynibigin) + BT(9hkgij — Gjngik)-
Wrapping it by indices h, k we get that
TR+ U°R 5 = (Abat)™ + 3B7)gi; — At (3.7)
Multiplying further (3.7) by an invariant s and taking into account (2.1)
we obtain:

YpaR, — % sa R + Y Rajsi =
= S(Awai/)a =+ 3B7')gij — Aswﬂ/Jj — TSRZ'j.
Let us rewrite (3.5) as follows:

Y Rijia = B(Yrgij — Vjgik)-

(3.8)
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Multiplying the latter identity by ¢*, then wrapping by index &, and further
substituting the result into (3.8) we will get:

Bvpop®gij — i — v*saRji + Y Rajsi =

(3.9)
= s(AYa ™ + 3BT)g;i; — Asith; — TSR;j.
Alternating (3.9) by indices ¢ and j we obtain
¥j ((n = 1)Bsi — @i) =i ((n = 1)Bs; — ¢;) =0,
which implies
(n —1)Bs; = i + vy, (3.10)

where v is some invariant.
Then (3.9) reduces to the following identity:

(BYop® — sApa 0™ — 3sBT) gij = (V*sq — 75) Rijj — (As—v)itp;. (3.11)
Wrapping (3.11), we get that
Btpop® — sAhotp® — 3sBT = £ (s, — 75) — L2 (As —v).
Then (3.11) can be rewritten as follows:
(wasa - 7—5) (Rij - %.%’j) - (AS V) ('ll)a 9i5 — ¢Z¢j) =0,

which is the same as

PB4 1 (W/;J ) —0, (3.12)

3 4
where 7 = ¢Y%s,, — 78, T = As — v.
Thus, we get the following result:

Theorem 3.1. If a equidistant pseudo-Riemannian space V,, admits gene-
ralized ¢(Ric)-vector fields, then in this space the conditions (3.10) hold for
a vector @; and conditions (3.12) for the Finstein tensor.

Theorem 3.1 agrees well with the results of [12,17,18], when the latter
are widened by application of the concept of the generalized ¢ (Ric)-vector
fields.

4. GENERALIZED ¢(Ric)-VECTOR FIELDS IN REDUCIBLE FIELDS

A pseudo-Riemannian space V,, with a metric tensor g;; is called lo-
cally reducible, whenever at each point M of V), there are local coordinates
y', 9%, ..., y" in which the main matrix is of the following form:

I = gpq(y")dyPdy? + gop(y”)dy dy*, (4.1)
(pyq,r=1,2,....m, o,p,v=m+1,m+2,...,n),
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where g,, depend only on the variables yl %, .. y™, and 9o depends only
on y™H M2y,
In what follows, a locally reducible space will be called reducible. Thus,

a reducible pseudo-Riemannian space V;,(gi;), by definition, is a product of
1 2
two pseudo-Riemannian spaces Vin(gpq) and Vi—m(gop):

9pqg | 0
gij = - -
0 | You

1 2
Each of V,, and V,,_,, can be either reducible or not whence (4.1) can

be re-written as follows:
T
ds? = Z dst (r>1),
k=1

where dsi is the quadratic form of V,,,, (m1 +ma + ...+ m, = n).

For a given pseudo-Riemannian space V,, a number r can take diffe-
rent values. The maximal value of r is called the mobility of a pseudo-
Riemannian space in respect to its reduction.

A pseudo-Riemannian space V,, is reducible if and only if it contains a
symmetric tensor a;; = cg;; (in case of some constant c), which complies to
the following conditions:

AiaQ] = agj, (4.2)

aijyk = 0, (43)

where aj = aajg™".

Equations (4.2) and (4.3) is an invariant (with respect to the given
local coordinates) condition, being necessary and sufficient for a pseudo-
Riemannian space V,, to be reducible. In the above-mentioned form it was
formulated by P. A. Shirokov [23].

A tensor a;j, that complies to condition (4.2), is called idempotent, while
a tensor a;; that complies to (4.3) is a covariant constant tensor.

The requirement of idempotency can be replaced by the requirement that
the matrix of a tensor a;; should have simple elementary divisors and real
roots (as was proved by G. Kruchkovich [20]). A similar formulation of this
characteristic can be found as an exercise in the book of L. P. Eisenhart
“Riemannian geometry”, [2], however without an addition on the real roots.
Without that requirement, it is easy to see that the characteristic is wrong.

Taking into account the Ricci identity, integrability conditions for the
equation (4.3) can be formulated as follows

aaiR?kl + aajRﬁd =0. (44)
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Cycling the latter by (i, k, 1), we obtain
aaiR?‘kl + aakR]O-‘li + aalR?ik =0.
Wrapping by indices (j, k), we can write down the following expression
aniRy —ay Ry =0,

where ‘ ‘

R; = Rajg™.
Tensors a;; and b;; satisfying the following identity

a;'baj = a3 bai,
are said to commute, [1].
Theorem 4.1. Each reducible pseudo-Riemannian space V,, contains an
idempotent tensor which commutes with the Ricci tensor of V.

Differential extensions of (4.4) can be written as follows:
aaiR?,d,m + aajRiofdm =0.

Wrapping the latter by indices [ and m and taking into account (2.1)
and (4.4), we get

ai'sa Ry — sjai Ry + af saRik — sia§ Ra, = 0. (4.5)
Alternating by indices j and k we obtain
ai'saRji — agsaRji — sia5 Ray + spaj Rai = 0.
Let us re-assign indices ¢ and k:
ag'sa Ry — af saRyi — sia Raj + sjap Rai = 0. (4.6)
Adding up the equations (4.6) and (4.5), we arrive at
ai'saRjk — siaf Rap = 0.

If s; # 0, then
a;’Rak = uRjk, (47)
where u is some invariant. '
Multiplying (4.7) by a = aaig®’ and taking into account (4.2) and (4.7)
we get

a$ Raj, = u’Rjy,. (4.8)
Substracting (4.8) out of (4.7) we can see that v =0 or v =1 and
as'se = us;. (4.9)

Thus, we have proved the following theorem:
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Theorem 4.2. In a reducible pseudo-Riemannian space admitting a gene-
ralized @(Ric)-vector field conditions (4.7) and (4.9) hold true with u = 0
oru=1.

5. GENERALIZED ¢(Ric)-VECTOR FIELDS IN KAHLERIAN SPACES

A Kahler space K,, (n = 2N), is a pseudo-Riemannian space with a
metric tensor g;;(x) containing structure (), which satisfies the following
condition, [3,6,19]:

FlF = =6} Fiijy =0; thj =0, (5.1)

where Fj; = giaFf‘, comma denotes a covariant derivative by the connection
of K, and brackets (ij) mean symmetrizing by indices i, j.

Notice that Kéahler spaces were introduced by P. A. Shirokov under the
name of A-spaces. Later these spaces were studied by E. K&hler and in
literature they are basically known as Kéhler spaces, [6,8].

For convenience define an operation of conjugation in K, as follows:

Ap = AE B = B F,, (52)
where A and B are some tensors of any valence. The equations (5.1)
and (5.2) imply the following properties:

A; = _Ai7 BZ = —Bi,
A B = A, B, AsBY = —A, B,
(43).5 =4, (B"), ;=B";

A metric tensor and Kronecker symbols satisfy the conditions:
h h h h h

9i5 = 9ij> 9ij = —9Yij» o =07 = Fy, o7 = —0; .
But the well-known identities, Ricci tensor and Riemannian tensor have the
following additional properties:

Rpiie = Rhijk; aik = 2R;p, R;; = R;j.

The inner objects of K,, are objects defined by the metric tensor g;; and
the structure Fih.

Consider Kéhler spaces admitting generalized ¢(Ric)-vector fields. Ap-
plying the operation of conjugation by indices j and k to (2.1) we get
ol = SR o + spRi; — s5 R (5.3)
Subtracting (5.3) out of (2.1) gives:

skRij — sjRix — spR;; + s; R = 0. (5.4)



240 A. Savchenko, N. Vashpanova, N. Vasylieva

Wrapping further by indices ¢ and j, we obtain
Rsi, = 254 Ry,

Finally, mltiplying (5.4) by a vector s* and wrapping by an index k we get
the following identity:

§%soRij = & (sis; + 555;) - (5.5)
Thus, we proved the following theorem:

Theorem 5.1. If a Kdhler space admits generalized ¢(Ric)-vector fields,
then the conditions (5.5) hold true.

Note that in the case defined by (5.5) the important role is played by a
vector s;, and, this is the reason why they do carry information on genera-
lized ¢(Ric)-vector fields for the case when s; is not constant.

6. CONCLUSIONS

The notion of generalized ¢(Ric)-vector field extends the concept of the
class of ¢(Ric)-vector fields in pseudo-Riemannian spaces. This generaliza-
tion is achieved by omitting the requirement imposed on the coefficient of
proportionality which now is not required to be constant. The paper [25]
studies non-trivial geodesic mappings of pseudo-Riemannian spaces admit-
ting ¢(Ric)-vector fields.

Special pseudo-Riemannian spaces admitting generalized ¢(Ric)-vector
fields require future study. In particular it is necessary to understand which
properties of such spaces are shared with spaces admitting ¢ (Ric)-vector
fields and which properties are new. Those spaces can find applications in
other fields of mathematics, [9,21,22,27].

In the present paper we found necessary conditions on Ricci tensor
for conformally flat, equidistant, reducible and Kéhler pseudo-Riemannian
spaces to admit generalized ¢(Ric)-vector fields. It turns out that in
all the cases those pseudo-Riemannian spaces are quasi-Einstein pseudo-
Riemannian spaces. Geodesic and conformal mappings of these spaces are
studied in [12,15,16]. The obtained results can be applied for the construc-
tion and further research on geometric properties of these spaces.
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