Some remarks concerning strongly separately continuous functions on spaces ℓ_p with $p \in [1, +\infty]$

Olena Karlova, Tomáš Visnyai

Abstract. We give a sufficient condition on strongly separately continuous function f to be continuous on space ℓ_p for $p \in [1, +\infty]$. We prove the existence of an ssc function $f : \ell_\infty \to \mathbb{R}$ which is not Baire measurable. We show that any open set in ℓ_p is the set of discontinuities of a strongly separately continuous real-valued function for $p \in [1, +\infty]$.

1. Introduction

The notion of real-valued strongly separately continuous (ssc) function defined on \mathbb{R}^n was introduced and studied by Dzagnidze in his paper [1]. Later, the authors extended in [7] the notion of the strong separate continuity to functions defined on the Hilbert space ℓ_2 equipped with the norm topology and proved, in particular, that there exists a real-valued ssc function on ℓ_2 which is everywhere discontinuous. Visnyai [8] constructed an ssc function $f : \ell_2 \to \mathbb{R}$ which belongs to the third Baire class and is not quasi-continuous at every point. Moreover, he gave a sufficient condition for a strongly separately continuous function to be continuous on ℓ_2.

In [3] Karlova extended the concept of an ssc function on any S-open subset of a product of topological spaces and investigated ssc functions with open set of discontinuities defined on a special subsets of a product of a sequence of normed spaces. Karlova and Mykhaylyuk obtained a characterization of the set of all points of discontinuity of strongly separately continuous functions defined on subspaces of products of finite-dimensional normed spaces [4].

2010 Mathematics Subject Classification: Primary 26A21, 54C08; Secondary 26B05, 54C30

Keywords: strongly separately continuous function, Baire classification
Karlova and Visnyai proved in [5] that any open set in ℓ_p is the set of discontinuities of a strongly separately continuous real-valued function for $p \in [1, +\infty)$ (see [5, Theorem 4.1]). Unfortunately, the proof of this result contains a gap, which we remove in Theorem 5.3 of this paper.

The Baire classification of ssc functions was investigated in [3] and [5]. It was proved that for every $2 \leq \alpha < \omega_1$ there exists a strongly separately continuous function $f : \ell_p \to \mathbb{R}$ which belongs the α‘th Baire class and does not belong to the β‘th Baire class on ℓ_p for $\beta < \alpha$, $p \in [1, +\infty)$.

In this paper we continue to study ssc functions defined on spaces ℓ_p with $p \in [1, +\infty]$. In Section 3 we give a sufficient condition on ssc function f defined on ℓ_p to be continuous. Further, we prove in Section 4 that there exists an ssc function $f : \ell_\infty \to \mathbb{R}$ which is not Baire measurable. Section 5 contains a result on a construction of ssc functions with open set of discontinuities.

2. Definitions and notations

We denote by ℓ_p, $p \in [1, +\infty)$, the normed space consisting of all sequences $x = (x_k)_{k=1}^\infty$ of reals such that $\sum_{k=1}^\infty |x_k|^p < +\infty$ endowed with the standard norm $\|x\|_p$ defined by the rule

$$\|x\|_p = \left(\sum_{k=1}^\infty |x_k|^p\right)^{1/p}$$

for all $x = (x_k)_{k=1}^\infty \in \ell_p$.

Let ℓ_∞ be the space of all bounded sequences of reals with the norm

$$\|x\|_\infty = \sup_{k \in \mathbb{N}} |x_k|$$

for all $x = (x_k)_{k=1}^\infty \in \ell_\infty$.

If $p \in [1, +\infty]$, $x^0 \in \ell_p$ and $\delta > 0$, then we write

$$B_p(x^0, \delta) = \{x \in \ell_p : \|x - x^0\|_p < \delta\}.$$

Definition 2.1. Let $p \in [1, +\infty]$, $x^0 = (x^0_k)_{k=1}^\infty \in \ell_p$ and $(Y, | \cdot - \cdot |)$ be a metric space. A function $f : \ell_p \to Y$ is said to be

- **separately continuous at a point** x^0 with respect to the k-th variable if the function $\varphi_k : \mathbb{R} \to Y$, $\varphi_k(t) = f(x^0_1, \ldots, x^0_{k-1}, t, x^0_{k+1}, \ldots)$ for all $t \in \mathbb{R}$, is continuous at x^0_k.

- **strongly separately continuous at a point** x^0 with respect to the k-th variable if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x = (x_k)_{k=1}^\infty \in B_p(x^0, \delta)$$
Some remarks concerning strongly separately continuous functions

\[|f(x_1, \ldots, x_k, \ldots) - f(x_1, \ldots, x_{k-1}, x_k^0, x_{k+1}, \ldots)| < \varepsilon. \quad (2.1) \]

If \(f \) is strongly separately continuous at \(x^0 \) with respect to each variable, then \(f \) is said to be \emph{strongly separately continuous at} \(x^0 \). Moreover, \(f \) is \emph{(strongly) separately continuous on} \(\ell_p \) if it is (strongly) separately continuous at each point of \(\ell_p \).

It is easy to see that

continuity \(\Rightarrow\) strong separate continuity \(\Rightarrow\) separate continuity.

None of the converse implications is true as the following examples show.

Example 2.2. Let

\[f(x_1, x_2, \ldots) = \begin{cases} \frac{x_1 \cdot x_2}{x_1^2 + x_2^2}, & x_1^2 + x_2^2 \neq 0, \\ 0, & \text{otherwise}. \end{cases} \]

The function \(f: \ell_p \to \mathbb{R} \) is separately continuous on \(\ell_p \) for every \(p \in [1, +\infty] \), but is not strongly separately continuous at \((0, 0, \ldots)\) for any \(p \in [1, +\infty] \) (see remarks after Theorem 3.1).

Example 2.3. Let \(A = \{ x = (x_k)_{k=1}^{\infty} \in \ell_p : |\{k : x_k \in \mathbb{Q}\}| < \aleph_0 \} \). We put

\[f(x_1, x_2, \ldots) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise}. \end{cases} \]

The function \(f: \ell_p \to \mathbb{R} \) is strongly separately continuous on \(\ell_p \), but is everywhere discontinuous for every \(p \in [1, +\infty] \).

Proof. Fix \(p \in [1, +\infty] \). It is easy to see that both \(A \) and \(\ell_p \setminus A \) are everywhere dense in \(\ell_p \). This imply that \(f \) is everywhere discontinuous on \(\ell_p \). Moreover, if \(x \) and \(y \) differs in at most one coordinate, then \(x \in A \) if and only if \(y \in A \). Therefore, \(|f(x) - f(y)| = 0 \) and (2.1) holds.

\[\square \]

3. Continuity of ssc functions

We will prove in this section the sufficient condition on strongly separately continuous functions to be continuous on spaces \(\ell_p \).

For \(p \in [1, +\infty] \), \(x, y \in \ell_p \) and \(n \in \mathbb{N} \) we put

\[\gamma_p^n(x, y) = \begin{cases} \sum_{k>n} |x_k - y_k|^p, & p < +\infty, \\ \sup_{k>n} |x_k - y_k|, & p = +\infty. \end{cases} \]
Theorem 3.1. Let $p \in [1, +\infty]$, $x^0 = (x^0_k)_{k=1}^{\infty} \in \ell_p$, $(Y, |\cdot|)$ be a metric space and $f: \ell_p \to Y$ be a strongly separately continuous function at x^0. If for every $\varepsilon > 0$ there exist $\delta > 0$ and $K \in \mathbb{N}$ such that
\[\gamma^K_p(x^0, y) < \delta \Rightarrow |f(y_1, \ldots) - f(y_1, \ldots, y_K, x^0_{K+1}, \ldots)| < \varepsilon \] (3.1)
for all $y = (y_k)_{k=1}^{\infty} \in \ell_p$, then f is continuous at x^0.

Proof. Fix $\varepsilon > 0$. According to the assumption there exists $\delta_0 > 0$ and $K \in \mathbb{N}$ such that the inequality
\[\gamma^K_p(x^0, y) < \delta_0 \]
implies the inequality
\[|f(y_1, y_2, \ldots) - f(y_1, \ldots, y_K, x^0_{K+1}, x^0_{K+2}, \ldots)| < \frac{\varepsilon}{2} \]
for all $y \in \ell_p$. Since f is strongly separately continuous at the point x^0, for every $k \in \{1, 2, \ldots, K\}$ there exists $\delta_k > 0$ such that
\[|f(x_1, \ldots, x_k, \ldots) - f(x_1, \ldots, x_{k-1}, x^0_k, x^0_{k+1}, \ldots)| < \frac{\varepsilon}{2K} \]
for all $x \in B_p(x^0, \delta_k)$. We put
\[\delta = \begin{cases} \min \{ \sqrt[p]{\delta_0}, \delta_1, \ldots, \delta_K \} , & p < \infty \\ \min \{ \delta_0, \delta_1, \ldots, \delta_K \} , & p = \infty. \end{cases} \]
Let us take $x = (x_k)_{k=1}^{\infty} \in B_p(x^0, \delta)$ and observe that
\[(x^0_1, \ldots, x^0_k, x^0_{k+1}, \ldots) \in B_p(x^0, \delta) \]
for every $k \in \{1, \ldots, K\}$. It follows that
\[|f(x_1, x_2, \ldots) - f(x^0_1, x^0_2, \ldots)| \leq |f(x_1, x_2, \ldots) - f(x^0_1, x^0_2, \ldots)| + \\
+ |f(x^0_1, x_2, x_3, \ldots) - f(x^0_1, x^0_2, x^0_3, \ldots)| + \cdots + \\
+ |f(x^0_1, \ldots, x^0_{K-1}, x_K, x^0_{K+1}, \ldots) - f(x^0_1, \ldots, x^0_{K-1}, x^0_K, x^0_{K+1}, \ldots)| + \\
+ |f(x^0_1, \ldots, x^0_{K-1}, x^0_K, x^0_{K+1}, \ldots) - f(x^0_1, \ldots, x^0_K, x^0_{K+1}, x^0_{K+2}, \ldots)| < \\
< K \cdot \frac{\varepsilon}{2K} + \frac{\varepsilon}{2} = \varepsilon. \]

Hence, f is continuous at x^0. \(\square\)

Now we are ready to show that the function f from Example 2.2 is not strongly separately continuous at $x^0 = (0, 0, \ldots)$. Assume the contrary and observe that for $K = 2$ we have $|f(y_1, y_2, \ldots) - f(y_1, y_2, 0, \ldots)| = 0$ for all $y \in \ell_p$. It follows that condition (3.1) holds for any $\varepsilon > 0$ and for any $\delta > 0$. Therefore, f has to be continuous at x^0 by Theorem 3.1, a contradiction.
As a straightforward corollary from Theorem 3.1 we obtain the next result.

Theorem 3.2. Let $p \in [1, +\infty]$, $(Y, |\cdot|)$ be a metric space and $f : \ell_p \to Y$ be a strongly separately continuous function. If

$$
\forall x \in \ell_p \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \exists K \in \mathbb{N}
$$

$$
|f(y_1, y_2, \ldots) - f(y_1, \ldots, y_K, x_{K+1}, x_{K+2}, \ldots)| < \varepsilon
$$

for all $y \in \ell_p$ with $\gamma^K_p(x, y) < \delta$, then f is continuous on ℓ_p.

4. Baire classification of ssc-functions

Let us recall the definition of Baire classes of functions. We denote the collection of all continuous maps $f : X \to Y$ between topological spaces X and Y by $B_0(X, Y)$. Assume that the classes $B_\xi(X, Y)$ are already defined for all $0 \leq \xi < \alpha$, where $\alpha < \omega_1$. Then $f : X \to Y$ is said to be of the α-th Baire class, $f \in B_\alpha(X, Y)$, if f is a pointwise limit of a sequence of maps $f_n \in B_\xi_n(X, Y)$, where $\xi_n < \alpha$.

Let $0 \leq \alpha < \omega_1$, X be a metrizable space, Y is a topological space and let Z be a locally convex space. According to Rudin’s result [6] each map $f : X \times Y \to Z$, which is continuous with respect to the first variable and is of the α-th Baire class with respect to the second one, belongs to the $(\alpha + 1)$-th Baire class on $X \times Y$. It is easy to prove the corollary of the Rudin Theorem (see [3, Proposition 3.1]): if $n \in \mathbb{N}$, X_1, \ldots, X_n are metrizable spaces and Z is a locally convex space, then every separately continuous map $f : \prod_{i=1}^n X_i \to Z$ belongs to the $(n - 1)$-th Baire class.

On the other hand, it was proved in [3, Corollary 2.8] that any strongly separately continuous map $f : \prod_{i=1}^n X_i \to Z$ is continuous. Therefore, it is interesting to study Baire classification of ssc functions defined on subsets of products of infinitely many factors, in particular, on spaces ℓ_p.

Definition 4.1. A subset $A \subseteq X$ of a Cartesian product $X = \prod_{k=1}^\infty X_k$ of sets X_1, X_2, \ldots is called S-open [3], if

$$
\{x = (x_k)_{k=1}^\infty \in X : |\{k : x_k \neq a_k\}| \leq 1\} \subseteq A
$$

for all $a = (a_k)_{k=1}^\infty \in A$.

Notice that any space ℓ_p as a subset of the set \mathbb{R}^ω of all sequences is an example of S-open set.

Proposition 4.2. For every $p \in [1, +\infty]$ there exists an S-open set $A \subseteq \ell_p$ which is not Borel measurable.
Proof. Firstly, we consider the case $p < +\infty$. Define a relation \sim on ℓ_p in the following way:

$$x \sim y \iff \text{the set } \{k \in \mathbb{N} : x_k \neq y_k\} \text{ is finite}$$

for all $x = (x_k)_{k=1}^{\infty}, y = (y_k)_{k=1}^{\infty} \in \ell_p$. Clearly, \sim defines the equivalence relation on ℓ_p. Consider a partition $(\sigma_i : i \in I)$ of ℓ_p on the equivalence classes σ_i.

It is not hard to verify that $|I| = c$. Then there are 2^c many sets of the form $\bigcup_{i \in J} \sigma_i$, where $J \subseteq I$.

On the other hand, since ℓ_p is separable, it is a second countable space. Hence, the cardinality of the collection of all open subsets of ℓ_p is c. Therefore, the cardinality of the collection of all Borel measurable sets in ℓ_p is also equal to c. Consequently, there exists a set $J \subseteq I$ such that the union

$$A = \bigcup_{i \in J} \sigma_i$$

is not Borel measurable.

Let $a = (a_k)_{k=1}^{\infty} \in A$ and $x = (x_k)_{k=1}^{\infty} \in \ell_p$ be a sequence which differs from a in at most one coordinate. Since $a \in \sigma_i$ for some $i \in J$, there exists a point $y = (y_k)_{k=1}^{\infty} \in \ell_p$ such that $\sigma_i = [y]$ and $|\{k \in \mathbb{N} : a_k \neq y_k\}| < \aleph_0$. Clearly, $|\{k \in \mathbb{N} : x_k \neq y_k\}| < \aleph_0$. Therefore, $x \in \sigma_i \subseteq A$. Hence, the set A is S-open.

Now let $p = +\infty$. For every $r \in \mathbb{R}$ we write

$$B_r = \{x \in \ell_1 : \|x\|_1 \leq r\}$$

and show that B_r is closed in ℓ_∞. Suppose that $\|x\|_1 = \sum_{k=1}^{\infty} |x_k| > r$. There exists a number $m \in \mathbb{N}$ such that

$$\sum_{k=1}^{m} |x_k| > r.$$

Since the map $s : \mathbb{R}^m \to \mathbb{R}, s(y_1, \ldots, y_m) = \sum_{k=1}^{m} |y_k|$ is continuous at (x_1, \ldots, x_m), there exists $\delta > 0$ such that

$$|x_k - y_k| < \delta \text{ for every } k \in \{1, \ldots, m\} \implies \sum_{k=1}^{m} |y_k| > r.$$

Then

$$B_\infty(x, \delta) \subseteq \ell_\infty \setminus B_r.$$

Therefore, $\ell_\infty \setminus B_r$ is open in ℓ_∞ and hence B_r is closed.

Now let G be an open subset of ℓ_1. Then there exists a sequence $(\delta_n)_{n=1}^{\infty}$ of reals and $(x_n)_{n=1}^{\infty}$ of points from ℓ_1 such that $G = \bigcup_{n=1}^{\infty} B_1(x_n, \delta_n)$. It follows that G is an F_σ-subset of ℓ_∞. Consequently, every Borel measurable subset of ℓ_1 is Borel measurable in ℓ_∞.
Conversely, if \(U = B_\infty(0,1) \cap \ell_1 = \{x \in \ell_1 : \sup_{k \in \mathbb{N}} |x_k| < 1\} \), then for \(x \in U \) we have that

\[
B_1(x, 1 - \|x\|_\infty) = \{y \in \ell_1 : \sum_{k=1}^{\infty} |y_k - x_k| < 1 - \|x\|_\infty\} \subseteq U.
\]

This implies that every open set in \(\ell_\infty \) is open in \(\ell_1 \). Hence, the collections of all Borel measurable sets in \(\ell_1 \) and in \(\ell_\infty \) coincide.

According to the previous arguments, there is an \(S \)-open subset \(A \) of \(\ell_1 \) which is not Borel measurable. Then \(A \) is not Borel measurable in \(\ell_\infty \).

Theorem 4.3. For every \(p \in [1, +\infty] \) there exists a strongly separately continuous function \(f : \ell_p \to \mathbb{R} \) such that \(f \notin \bigcup_{\alpha < \omega_1} B_\alpha(\ell_p, \mathbb{R}) \).

Proof. Fix \(p \in [1, +\infty] \). By Proposition 4.2 we can find an \(S \)-open subset \(A \subseteq \ell_p \) which is not Borel measurable. For all \(x \in \ell_p \) we put

\[
f(x) = \begin{cases}
1, & x \in A, \\
0, & x \notin A.
\end{cases}
\]

Notice that \(f \notin \bigcup_{\alpha < \omega_1} B_\alpha(\ell_p, \mathbb{R}) \), since the set \(A = f^{-1}(1) \) is not Borel measurable.

Since \(f(x) = f(y) \) whenever \(y \) differs from \(x \) in at most finitely many coordinates, \(f \) is strongly separately continuous on \(\ell_p \). \(\square \)

5. DISCONTINUITIES OF SSC FUNCTIONS

By \(C(f) \) (\(D(f) \)) we denote the set of all points of continuity (discontinuity) of a map \(f \).

We start with two simple facts.

Lemma 5.1. Let \(X \) be a topological space, \(\varphi : X \to \mathbb{R} \) be a continuous function, \(g : X \to \mathbb{R} \) be a bounded function and \(f : X \to \mathbb{R} \) be a function such that \(f(x) = \varphi(x) \cdot g(x) \) for all \(x \in X \). Then \(\varphi^{-1}(0) \subseteq C(f) \).

Proof. Fix \(x_0 \in \varphi^{-1}(0) \) and \(\varepsilon > 0 \). Let \(C > 0 \) be a real number such that \(|g(x)| \leq C \) for all \(x \in X \). Since \(\varphi \) is continuous at \(x_0 \), we can find a neighborhood \(U \) of \(x_0 \) such that \(|\varphi(x)| < \frac{\varepsilon}{C} \) for all \(x \in U \). Then

\[
|f(x) - f(x_0)| = |\varphi(x) \cdot g(x)| < \frac{\varepsilon}{C} \cdot C = \varepsilon
\]

for all \(x \in U \). \(\square \)
Lemma 5.2. For any $p \in [1, +\infty)$ the set

\[D = \left\{ x = (x_k)_{k=1}^\infty \in \ell_p : \sum_{k=1}^\infty \sqrt{|x_k|} = +\infty \right\} \]

is dense in ℓ_p.

Proof. Fix $p \in [1, +\infty)$, $x \in \ell_p$ and $\delta > 0$. We find $N \in \mathbb{N}$ such that

\[\sum_{k=N+1}^\infty |x_k|^p < \left(\frac{\delta}{2} \right)^p \quad \text{and} \quad \sum_{k=N+1}^\infty \frac{1}{k^{2p}} < \left(\frac{\delta}{2} \right)^p. \]

Let

\[y = \left(x_1, \ldots, x_N, \frac{1}{(N+1)^p}, \frac{1}{(N+2)^p}, \ldots \right). \]

Clearly, $y \in D$. Moreover,

\[\|x - y\|_p \leq \left(\sum_{k=N+1}^{\infty} \left(\frac{1}{k^p} \right)^\frac{1}{p} \right)^{\frac{1}{p}} + \left(\sum_{k=N+1}^{\infty} |x_k|^p \right)^\frac{1}{p} < \frac{\delta}{2} + \frac{\delta}{2} = \delta. \]

Hence, D is dense in ℓ_p. \hfill \Box

Theorem 5.3. For any $p \in [1, +\infty)$ and for any open nonempty set $G \subseteq \ell_p$ there exists a strongly separately continuous function $f : \ell_p \to \mathbb{R}$ such that $D(f) = G$.

Proof. Fix $p \in [1, +\infty)$. Let $\emptyset \neq G \subseteq \ell_p$ be an open set and $F = \ell_p \setminus G$.

For every $x = (x_k)_{k=1}^\infty \in \ell_p$ we put

\[\varphi(x) = \begin{cases} \min\{d_\infty(x, F), 1\}, & F \neq \emptyset, \\ 1, & F = \emptyset, \end{cases} \]

\[g(x) = \begin{cases} \exp\left(-\sum_{k=1}^{\infty} \sqrt{|x_k|} \right), & x \in \ell_{1/2}, \\ 1, & \text{otherwise}, \end{cases} \]

and let

\[f(x) = \varphi(x) \cdot g(x). \]

Then $F \subseteq C(f)$ by Lemma 5.1.

Now we show that $G \subseteq D(f)$. Assume that $x^0 \in G$. Then $f(x^0) > 0$. We put $\varepsilon = \frac{1}{2} f(x^0)$ and take an arbitrary $\delta > 0$.
Some remarks concerning strongly separately continuous functions
15

Since the set $D = \{ x \in \ell_p : \sum_{k=1}^{\infty} \sqrt{|x_k|} = +\infty \}$ is dense in ℓ_p by
Lemma 5.2, there exists $x = (x_n)_{n \in \mathbb{N}} \in \ell_p$ such that
\[
\|x - x^0\|_p < \frac{\delta}{2} \quad \text{and} \quad x \in D.
\]
Take a number N such that
\[
\sum_{n=1}^{N} \sqrt{|x_n|} > \ln\left(\frac{2}{f(x^0)}\right) \quad \text{and} \quad \sum_{n=N+1}^{\infty} |x_n|^p < \left(\frac{\delta}{2}\right)^p.
\]
We put $y = (x_1, \ldots, x_N, 0, 0, \ldots)$. Then $y \in \ell_{1/2}$ and
\[
\|y - x^0\|_p \leq \|y - x\|_p + \|x - x^0\|_p = \left(\sum_{n=N+1}^{\infty} |x_n|^p \right)^{\frac{1}{p}} + \|x - x^0\|_p < \frac{\delta}{2} + \frac{\delta}{2} = \delta.
\]
But
\[
f(x^0) - f(y) = f(x^0) - \varphi(y) \cdot \exp\left(-\sum_{n=1}^{N} \sqrt{|x_n|}\right) > f(x^0) - \exp\left(-\sum_{n=1}^{N} \sqrt{|x_n|}\right) > f(x^0) - \frac{f(x^0)}{2} = \varepsilon,
\]
which implies that f is discontinuous at x^0. Therefore, $D(f) = G$.

Now we prove that g is strongly separately continuous. Fix $x^0 \in \ell_p$, $k \in \mathbb{N}$ and $\varepsilon \in (0, 1)$. Take $x = (x_k)_{k=1}^{\infty} \in B_p(x^0, \delta)$ and $y = (x_1, \ldots, x_{k-1}, x^0_k, x_k, \ldots) \in B_p(x^0, \delta)$. If $x \notin \ell_{1/2}$, then $y \notin \ell_{1/2}$. In this case $|g(x) - g(y)| = 0 < \varepsilon$. Assume that $x \in \ell_{1/2}$. Then $y \in \ell_{1/2}$ and
\[
|g(x) - g(y)| = \left| \exp\left(-\sum_{n=1}^{\infty} \sqrt{|x_n|}\right) - \exp\left(-\sum_{n=1}^{\infty} \sqrt{|y_n|}\right) \right| < \left| \exp\left(\sum_{n=1}^{\infty} \left(\sqrt{|y_n|} - \sqrt{|x_n|}\right)\right) - 1 \right| = \exp\left(\sqrt{|x^0_k|} - \sqrt{|x_k|}\right) - 1.
\]
It follows that
\[
|g(x) - g(y)| = \exp\left(\sqrt{|x_k|} - \sqrt{|x^0_k|}\right) - 1 < \exp(\sqrt{\delta}) - 1 = \varepsilon.
\]
in the case $\sqrt{|x^0_k|} - \sqrt{|x_k|} \geq 0$, or
\[
|g(x) - g(y)| < 1 - \exp(-\sqrt{\delta}) < \varepsilon,
\]
on otherwise. Hence, g is strongly separately continuous at x^0 with respect to the k’th variable.

Finally, f is strongly separately continuous on ℓ_p as a product of two ssc functions (see Theorem 3 from [2]).

In connection with Example 2.3 and Theorem 5.3 the following question is natural and open.

Question 5.4. Let $G \subseteq \ell_\infty$ be an open nonempty set. Does there exist a strongly separately continuous function $f : \ell_\infty \to \mathbb{R}$ such that $D(f) = G$?

References

Received: September 20, 2017, accepted: November 24, 2017.

Olena Karlova
Yuri Fed’kovych Chernivtsi National University, Ukraine
Email: maslenizza.ua@gmail.com

Tomáš Visnyai
Slovak University of Technology in Bratislava, Slovak Republic
Email: tomas.visnyai@stuba.sk