Grain Products and Mixed Fodder’s

ISSN-print: 2313-478X
ISSN-online: 2411-3921
ISO: 26324:2012





Wheat bran is a by-product of conventional milling and is commercially available in large quantities. Beside its high content of dietary fibre it contains proteins, minerals as well as vitamins and others biologically active components. In recent years, there have been designed different approaches to incorporation of wheat bran in food products to optimize composition or physiological effects. Industrial wheat bran is one of the most representative available hemicellulosic rich products. Arabinoxylans are the predominant non-starch polysaccharides found in the structural matrix of cell walls in wheat grains, being present in large quantities in wheat bran, accounting for up to 15-20% of its composition. Their physicochemical properties define their functionality which can be beneficial in cereal-based products such as bread, where their addition could enhance the gluten matrix responsible for the aerated structure and quality of bread. A potential source of аrabinoxylans is its extraction from the wheat bran based low value as an end product of the milling process. The benefits of extraction are twofold, to enhance nutritional value wheat by-product reducing fibre content and produce a high value product for use as a functional ingredient in the bread making industry and in others foods. Extraction of arabinoxylans involves many possibilities for obtaining substances with different physicochemical properties, giving opportunity for integration in functional foods. Functional behaviour includes viscosity, water solubility, water holding capacity, oxidative cross linking and gel formation and foam stability, which are all reported to be affected by the physicochemical properties of arabinoxylans, as well as chain to chain interactions with other polymers and with the solvent. Currently no commercial supply of arabinoxylans is available in sufficient quantities to conduct functionality trials; therefore the objective of the current work was to study the feasibility of extracting arabinoxylans from the bran for future developing and scaled-up extraction process based on the analyzed methods and approaches.

Ключові слова:
Для цієї мови відсутні ключові слова


Як цитувати


1. Amreina T. In vitro digestibility and colonic ferment ability of aleurone isolated from wheat bran / T. Amreina, R. Amad, P. Gr.anicherb // Lebensmittel Wissenschaft und Technologie. – 2003. – Vol. 36, Is.1. – P. 451 – 460. DOI: 10.1016/S0023-6438(03)00036-7
2. Pomeranz Y. Chemical composition of kernel structures // Wheat: Chemistry and technology. St. Paul, MN: American Association of Cereal Chemists. – 1988. – Vol.1. – P. 97 – 158.
3. Lupton J. R. Potential protective mechanisms of wheat bran fibre / J. R. Lupton & N. D. Turner // American Journal of Medicine. – 1999. – Vol. 106, Is. – P. 24 – 27. DOI: 10.1016/S0002-9343(98)00343-X
4. Ha¨rko¨nen H. Distribution and some properties of cell wall polysaccharides in rye milling fractions / H. Ha¨rko¨nen, E. Pessa, T. Suortti // Journal of Cereal Science. – 1997. – Vol. 26, Is. – P. 95 – 104. DOI: 10.1006/jcrs.1996.0106
5. Aguedoa M. Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained / M. Aguedoa, C. Fougniesb // Carbohydrate Polymers. – 2014. – Vol. 105. – P.317 – 324. DOI: 10.1016/j.carbpol.2014.01.096
6. Lu Z.X. Arabinoxylan fibre improves metabolic control in people with Type II diabetes / Z. X. Lu, K. Z. Walker, J. G. Muir, K. O’Dea // European Journal of Clinical Nutrition. – 2004. – Vol. 58. – P.621 – 628. DOI: 10.1038/sj.ejcn.1601857
7. Falck P. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescents / P. Falck, S. Precha-Atsawanan, C. Grey, P. Immerzeel, et all. // Journal of Agricultural and Food Chemistry. – 2013. – Vol. 61. – P.733. DOI: 10.1021/jf401249g
8. Geraylou Z. Prebiotic effects of arabinoxylans-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing / Z. Geraylou, C. Rurangwa, E. Maes, G. E. Spanier, et al. // FEMS Microbiology Ecology. – 2013. – Vol. 86. – P. 357 – 371. DOI: 10.1111/1574-6941.12169
9. Gibson G. R. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics / G. R. Gibson, H. M. Probert, J. van Loo, R. A Rastall // Nutrition Research Reviews. – 2004. – Vol. 17. – P. 259 – 275. DOI: 10.1079/NRR200479
10. Zhurlova O. The current trends and future perspectives of arabinoxylans prebiotics research: a review / O.D. Zhurlova, L.V. Kaprelyants // Grain Products and Mixed Fodder's. – 2017. – Vol.17. – P.4 – 11. DOI: 10.15673/gpmf.v17i4.760
11. Rao R. S. P. Water soluble feruloyl arabinoxylans from rice and rage: Changes upon malting and their consequence on antioxidant activ-ity / R. S. P. Rao, G. Muralikrishna // Photochemistry. – 2006. – Vol. – P. 67 –91. DOI: 10.1016/j.phytochem.2005.09.036
12. Kaprelyants L.V. Technology of wheat and rye bran biotransformation into functional ingredients /L.V. Kaprelyants, O. D. Zhurlova // International Food Research Journal. – 2017. – Vol.24. – P.1975 – 1979. ISSN: 1985-4668 (Scopus)
13. Izydorczyk M. Physical properties of water-soluble pentosanes from different wheat varieties / M. Izydorczyk, C. Biliaderis, W Bushuk // Journal Cereal Chemistry. – 1995. – Vol. 68, Is.. – P.145 – 150.
14. Saeed F. Arabinoxylans and arabinogalactans: a comprehensive treatise / F. Saeed, I. Pasha, F. Anjum, and M. Sultan // Critical Reviews in Food Science and Nutrition. – 2011. – Vol. 51, Is.3. – P. 467 – 476. DOI: 10.1080/10408391003681418
15. Maes C. Structural characterization of water-extractable and water-unextractable arabinoxylans in wheat bran / C. Maes, J. Delcour //Journal of Cereal Science. –2002. – Vol. 35, Is.4. – P. 315 – 326. DOI: 10.1006/jcrs.2001.0439
16. Saulnier L. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties / L. Saulnier, S. Pierre-Etienne, B. Gerard //Journal of Cereal Science. – 2007. – Vol. 46 – P. 261 – 281. DOI: 10.1016/j.jcs.2007.06.014
17. Escarnot E. Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis / E. Escarnot, M. Aguedo, R. Agneessens, B. Wathelet // Journal of Cereal Science. – 2009. – Vol. 65 – P. 51 – 95. DOI: 10.1016/j.jcs.2010.09.002
18. Mustafa M. Evaluating the feasibility of commercial arabinoxylan production in the context of a wheat biorefinery principally producing ethanol / M. Mustafa, N. Misailidis, F. Mateos-Salvador, Du C. // Chemical Engineering Research and Design. – 2007. – Vol. 87. – P. 1239 – 1250. DOI: 10.1016/j.cherd.2008.12.027
19. Delcour J. Principles of Cereal Science and Technology /J. Delcour, R. Hoseney // AACC International, Inc., Minnesota, USA. – 2010. – P. 541 – 560. DOI: 10.1002/star.19870390416
20. Maes C. Alkaline hydrogen peroxide extraction of wheat bran non starch polysaccharides / C. Maes, J. Delcour // Journal of Cereal Science. – 2001. – Vol.34. – P. 29 – 35. DOI: 10.1006/jcrs.2001.0377
21. Saulnier L. Plant cell wall polysaccharides in storage organs: Xylans (food applications) / L. Saulnier, F. Guillon, P. Sado and X. Rouau // Plant Polysaccharides. – 2007. – Vol.1. DOI: 10.1016/B978 0-12-409547-2.01493-1
22. Van den Bulck K. Amino acid sequence of wheat flour arabinogalactan - peptide, identical to part of grain softness protein GSP-1, leads to improved structural model / K. Van den Bulck, A. Loosveld, C. Courtin, P. Proost, J. Van Damme, J. Robben, A. Mort // Cereal Chemistry. – 2002. – Vol. 79, Is.3. P. 329 – 331. DOI: 10.1094/CCHEM.2002.79.3.329
23. Izydorczyk M. Arabinoxylans: Technologically and Nutritionally Functional Plant Polysaccharides / M. Izydorczyk, C. Biliaderis // Taylor and Francis Group. LLC. Oxford, UK. – 2007.
24. Saulnier L. Variability in grain extract viscosity and water- soluble arabinoxylan content in wheat / L. Saulnier, N. Peneau and J. Thibault // Journal of Cereal Science. – 1995. – Vol. 22. – P. 259 – 264. DOI: 10.1006/jcrs.1995.0062
25. Zhou S. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase aided extraction/ S. Zhou, X. Liu // Carbohydrate Polymers. – 2010. – Vol.81. – P.84 – 89. DOI: 10.1016/j.carbpol.2010.03.040
26. Antoine C. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran / C. Antoine, S. Peyron, F. Mabille , C. Lapierre, B. Bouchet , J. Abecassis and X. Rouau // Journal of Agricultural and Food Chemistry. – 2003. – Vol. 55, Is.1. – P. 2026 – 2033. DOI: 10.1021/jf0261598
27. Gebruers K. Variation in the content of dietary fiber and components thereof in wheats in the health grain diversity screen / K.
Gebruers, E. Dornez, D. Boros, A. Frás, W. Dynkowska, Z. Bedo, M. Rakszegi, J. Delcour and C. Courtin // Journal of Agricultural and Food Chemistry. – 2008. – Vol.56. – P. 9740 – 9749. DOI: 10.1021/jf800975w
28. Misailidis N. Evaluating the feasibility of commercial arabinoxylan production in the context of a wheat biorefinery principally producing ethanol. Part 2. Process simulation and economic analysis / N. Misailidis, G. Campbell, Du, J. Sadhukhan, M. Mustafa, F. Mateos-Salvador and R. Weightman // Chemical Engineering Research and Design.– 2009. – Vol. 87. – P. 1239 – 1250. DOI: 10.1016/j.cherd.2008.12.028
29. Hollmann J. Pilot – scale isolation of glucuronoarabinoxylans from wheat bran / J. Hollmann and M. Lindhauer // Carbohydrate Polymers. – 2005. – Vol. 59. – P. 225 – 230. DOI: 10.1016/j.carbpol.2004.09.015
30. Weightman R. Towards defining optimal feedstocks for a wheat biorefinery: Co-production of arabinoxylans with bioethanol / R. Weightman, H.R Davis-Knight, N. Misailidis, A. Villanueva and G. Campbell // Aspects of Applied Biology. Biomass and Energy Crops III. – 2008. – P. 153 – 160.
31. Antoine C. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran / C. Antoine, S. Peyron, F. Mabille, C. Lapierre, B. Bouchet, J. Abecassis and X. Rouau // Journal of Agricultural and Food Chemistry. – 2003. – Vol. 55, Is.1. – P. 2026 – 2033. DOI: 10.1021/jf0261598
32. Hashimoto S. Cereal pentosans: their estimation and significance. Pentosans in wheat and milled wheat products / S. Hashimoto, I. Shogren and Y. Pomeranz // Cereal Chemistry. – 1987. – Vol. 64. – P. 30.
33. Cyran M. Heterogeneity in the fine structure of alkali- extractable arabinoxylans isolated from two rye flours with high and low bread making quality and their coexistence with other cell wall components / M. Cyran, C. Courtin and J. Delcour // Journal of Agricultural and Food Chemistry. – 2004. – Vol. 52, Is.5. – P.2671 – 2680. DOI: 10.1021/jf030550r
34. Adam A. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats / A. Adam, V. Crespy, M. A. Levrat-Verny, F. Leenhardt, M. Leuillet, C. Demigne and C. Remesy // Nutrition Research Reviews. – 2002. – Vol.132, Is.7. – P. 1962 – 1968. DOI: 10.1093/jn/132.7.1962
35. Harder H. Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo / H. Harder, I. Tetens, M. Let and A. Meyer // Eur. J. Nutrition Research Reviews. – 2004. – Vol.43, Is.2. – P. 230 – 236. DOI: 10.1007/s00394-004-0463-5
36. Mateo N. Bioavailability of ferulic acid is determined by its bioaccessibility / N. Mateo Anson, R. Van den Berg, R. Havenaar, and G. R. M. M. Haenen // Journal of Cereal Science. – 2009. – Vol.49. – P. 296 – 300. DOI: 10.1111/j.1365-2125.2012.04425.x
37. Mathew S. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications / S. Mathew and T. E. Abraham //Crit. Rev. Biotechnology. –2004. Vol.24. – P. 59. DOI: 10.1080/07388550490491467
38. Dornez E. Grain-associated xylanases: occurrence, variability, and implications for cereal processing / E. Dornez, K. Gebruers, J. A. Delcour and C. M. Courtin // Journal Food Science Technol. – 2009.– Vol.20. – P. 495 – 510. DOI: 10.1016/j.tifs.2009.05.004
39. Wang J. Inhibitory effect of wheat bran feruloyl oligosaccharides on oxidative DNA damage in human lymphocytes / J. Wang, B. Sun, Y. Cao, H. Song and Y. Tian // Food Chemistry. – 2008. – Vol.109. – P. 129 – 136. DOI: 10.1016/j.foodchem.2007.12.031
40. Bhanja T. Enrichment of phenolic and free radical scavenging property of wheat koji prepared with two filamentous fungi / T. Bhanja, A. Kumari // Bioresour Technol. – 2009. – Vol.100. – P.2861 – 2866. DOI: 10.1016/j.biortech.2008.12.055
41. Moore J. Effects of solid-state enzymatic treatments on the antioxidant properties of wheat bran / J. Moore, Z. Cheng, L. Su and L. Yu, // Journal Argic Food Chem. – 2006.– Vol.54. – P. 9032 – 9045. DOI: 10.1021/jf0616715
42. Anson N. M. Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds / N. M. Anson, E. Selinheimo, R. Havenaar, A.M. Aura, I. Mattila, P. Lehtinen, A. Bast, K. Poutanen and G. R. M. M. Haenen // Journal Agric Food Chem. – 2009.– Vol.57. – P. 6148 – 6155. DOI: 10.1021/jf900492h
43. Anson N. M. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo / N. M. Anson, A. M. Aura, E. Selinheimo, I. Mattila, K. Poutanen, R. Van den Berg, R. Havenaar, A. Bast //J Nutrition Research Reviews. – 2011.– Vol.141. – P. 137 – 143. DOI: 10.3945/jn.110.127720
44. Yoshida-Shimokawa T. Enzymic feruloylation of arabinoxylan trisaccharide by feruloyl-CoA: arabinoxylan-trisaccharide Ohydroxycinnamoyl transferase from Oryza sativa / T. Yoshida Shimokawa, S. Yoshida, K. Kakegawa and T.Ishii // Planta 212. – 2001. – P.470– 474. DOI: 10.1007/s004250000490
45. Ramseyer D. Water-Unextractable and Water-Extractable Arabinoxylans in Wheat Flour Mill Streams / D. Ramseyer A. Bettge and C. Morris // Cereal Chemistry. – 2011. – Vol. 88, P. 209 – 216. DOI: 10.1094/CCHEM-10-10-0148