Grain Products and Mixed Fodder’s

ISSN-print: 2313-478X
ISSN-online: 2411-3921
ISO: 26324:2012
Архiви

ДОСЛІДЖЕННЯ ФЕРМЕНТАТИВНОГО ГІДРОЛІЗУ ВІДХОДІВ ПЕРЕРОБКИ НАСІННЯ СОНЯШНИКУ

##plugins.themes.bootstrap3.article.main##

V. Skliar
G. Krusir
V. Zakharchuk

Анотація

Ukraine has a developed agricultural sector, in particular crop production, which is a source of large quantities of production residues and waste. One of the most promising areas for solving environmental problems in the production of grain products is the processing of industrial waste by enzymes and the use of processing products in other industries. The current needs of sustainable environmental practices have increased the use of enzymatic technologies in production processes. Lipases be used in the processing of waste from oil and fat enterprises, namely, waste from the stage of demetallization of hydrogenated fat from vegetable oils by enzymatic hydrolysis.The work is devoted to the study of conditions of enzyme Rhizopus japonicus lipase immobilization and its physical and chemical characteristics. Factors for obtaining immobilized biocatalysts, methods and conditions for determining the activity and stability of immobilized enzymes are highlighted. Lipolytic activity of the enzyme immobilized under these conditions remains more than 30% compared to native, which is a high indicator of activity retention. It has been shown that immobilization promotes the expansion of the pH- and thermo-optimum of the lipase. It was determined that for the Rhizopus japonicus immobilized lipase, the pH optimum increased with a shift from 7.0 to 6.5, and there was an increase in pH stability during prolonged incubation of the immobilized enzyme for alkaline and acidic pH values. It has been established that lipase immobilization leads to expansion of the thermo-optimum, as well as stabilization of the enzyme during prolonged incubation at 40 ° C and at higher temperatures (+60-80 ° C), which are possible when drying the final product. The high activity and stability of the immobilized lipase make it possible to recommend it for biotechnological processing of
oil-fat waste.

Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
Skliar, V., Krusir, G., & Zakharchuk, V. (2020). ДОСЛІДЖЕННЯ ФЕРМЕНТАТИВНОГО ГІДРОЛІЗУ ВІДХОДІВ ПЕРЕРОБКИ НАСІННЯ СОНЯШНИКУ. Grain Products and Mixed Fodder’s, 20(1), 5-11. https://doi.org/10.15673/gpmf.v20i1.1687
Розділ
ЗЕРНО: ТЕХНОЛОГІЯ ТА ЯКІСТЬ

Посилання

1. Skliar, V., Krusir, H., Kovalenko, I., Kuznietsova, I., Shpyrko T. Rozrobka enerhoefektyvnoi tekhnolohii utylizatsii vidkhodiv oliino zhyrovoi haluzi. Naukovi pratsi. 2019. Vol. 83(1):92-97. https://doi.org/10.15673/swonaft.v83i1.1424
2. Keleti T. Osnovyi fermentativnoy kinetiki. Moskva: Mir; 1990.
3. Paiva, A. L., Balcão, V. M., Malcata, F. X. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enz. Microb. Technol. 2000; Vol.27: 187-204.
4. Krusir H.V. Prohnozuvannia efektyvnykh metodiv stabilizatsii roslynnykh biokorektoriv. Zernovi produkty i kombykormy. 2010; N2 (38):15-18.

5. Cherno N.K., Krusyr H.V. Rusieva Ya.P. Kompleksoutvorennia yak metod immobilizatsii soievykh inhibitoriv. Kharchova nauka i tekhnolohiia. 2010; Vypusk 1: 24-27.
6. Cherno N.K., Krusir H.V., Kovalenko O.V. Biokorektory protsesiv travlennia: monohrafiia. Odesa; 2009.
7. V. Gunasekaran and D. Das, Lipase fermentation: Progress and prospects, Indian J. Biotechnol. 2005; Vol. 4: 437—445
8. Ramani K., Karthikeyan S., Boopathy R., Kennedy L.J., Mandal A.B., Sekaran G. Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: isotherm and kinetic studies. Process Biochem. 2012; Vol. 47: 435–445.
9. Kandasamy R., Kennedy L.J., Vidya C., Boopathy R., Sekaran J. Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive oil. J. Mol. Catal. B: Enzymatic. 2010; Vol. 62: 59–66.
10. Hrydziuszko Z., Dmytryk A., Majewska P., Szymaсska K., Liesiene J., Jarzкbski A., Bryjak J. Screening of lipase carriers for reactions in water, biphasic and pure organic solvent systems. Acta Biochim. Polonica. 2014; Vol. 61: 1-6.
11. Thakur S. Lipases, its sources, properties and applications: A Review. Int J Sci Eng Res. 2012; Vol. 3(7): 1-29.
12. Kumar DS, Ray S. Fungal lipase Production by solid state fermentation-An overview. J Anal Bioanal Tech. 2014; Vol. 6(1): 1-10.
13. Singh AK, Mukhopadhyay M. Overview of Fungal Lipase: A Review. Appl Biochem Biotechnol. 2012; Vol. 166(2): 486-520.
14. Polyigalina G.V., Cherednichenko V.S., Rimarev L.V. Opredelenie aktivnosti fermentov: Spravochnik. Moskva: DeLi print; 2003.
15. Keyts M. Tehnika lipidologii. Vyidelenie, analiz i identifikatsiya lipidov, Moskva: Mir; 1975.