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The interdisciplinary nature of new objectives aimed at the design of the working matters for environmen-

tally friendly technologies requires a more dynamic use of information technology (IT) to ensure proper 

trade-off decisions under a competitive environment. Machine learning (ML) is the part of artificial intel-

ligence (AI) methodologies that uses algorithms that are not a direct solution to a problem but learning 

through solutions to innumerable similar problems. Machine learning has explored a new path in the 

study of the thermodynamic behavior of emerging substances. Various computational tools have been 

provided with an effective approach to solving the actual problem of predicting the phase behavior of soft 

substances under strong exogenous influences. The aim of this study is to develop a new perspective on 

predicting the thermodynamic properties of soft substances using a methodology that provides artificial 

neural networks (ANN) and a global phase diagram to ensure correlation between structure and proper-

ties. In this study, we present applications of machine learning in engineering thermodynamics to predict 

azeotropic behaviour of binary refrigerants and determine the coefficient of performance (COP) for Or-

ganic Rankine Cycle (ORC) working media based on the data on boiling and critical points was studied. 

A new approach to predicting the formation of an azeotropic state in a mixture, which is developed and 

presented. This approach uses the synergy of neural networks and the global phase diagram methodology 

to correlate azeotropic data for binary mixtures based only on the critical properties and the centric coef-

ficient of the individual components in refrigerant mixtures. It does not require intensive calculations. 

The construction of ANN correlations between the information attributes of working fluids and the crite-

ria for the efficiency of the Rankin cycle narrows the scope of trade-offs in the space of competitive eco-

nomic, environmental and technological criteria. 
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1. Introduction 

 

The innovative nature of the modern economy 

produces a breakthrough in the field of thermody-

namics. The interdisciplinary nature of new objectives 

aimed at the design of the working matters for 

environmentally friendly technologies requires a more 

dynamic use of information technology (IT) to ensure 

proper trade-off decisions under a competitive envi-

ronment. In this case, the competence and experience 

of the experts are replaced by the "wisdom of many". 

There is a shift in motivation for research: from 

traditional "just in case" to research "just in time." 

Machine learning (ML) is the part of artificial 

intelligence (AI) methodologies that uses algorithms 

that are not a direct solution to a problem but learning 

through solutions to innumerable similar problems. 

The use of machine learning for the determination of 

fluid property correlations recently was applied in the 

study [1], equation of state for fluid properties was 

generated by the machine learning approach in [2]. 

The presented examples of machine learning applica-
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tions in soft matter, including design of self-

assembling materials, nonlinear learning of protein 

folding landscapes, high throughput antimicrobial 

peptide design, and data-driven materials design 

engines, are given in [3]. Prediction of activity coeffi-

cients with ML was performed in [4], a general-

purpose machine learning framework for predicting 

properties of inorganic materials was presented in [5], 

computer-aided synthesis planning is discussed in [6].  

The neural network is one example of machine 

learning algorithms applying to quantum physics [7], 

physical chemistry [8] and [9]. Recent trends of 

machine learning in the heat transfer sector are 

reflected in applying renewable energy [10]. 

In this study, we present applications of machine 

learning in engineering thermodynamics as an illu-

strative example of integration of data science para-

digms and thermodynamic approach to predict azeo-

tropic behaviour of binary refrigerants and determine 

the coefficient of performance (COP) for Organic 

Rankine Cycle (ORC) working media. The conven-

tional artificial neural networks approach was applied 

to evaluate the data, capable of recognising complex 

input-output relationships. 

Data science is the modern direction in poorly 

structured large data sets, in which hidden patterns 

between variables are revealed. Data science algo-

rithms combine a wide range of scientific disciplines: 

machine learning, statistics, artificial intelligence, 

databases and others. The main methods and algo-

rithms of Data science include the following: artificial 

neural networks, decision trees, symbolic rules, 

nearest neighbour methods, and k-nearest neighbour, 

support vector machine, Bayesian networks, including 

the Apriori algorithm; evolutionary programming and 

genetic algorithms, various methods of data visuali-

sation and many other methods. 

Recently, estimates based on the theory of fuzzy 

sets have become widespread. SVM (Support vector 

machines) algorithm provides users with the most 

robust and accurate method to solve machine-learning 

problems. Linear or nonlinear regressions are often 

used in modelling and predicting thermodynamic 

properties. However, real-world problems do not fit 

well-developed statistical methods for this case. The 

main algorithms and solution methods are reduced to 

the following: Statistical methods – Neural network 

algorithms – Genetic algorithms – Evolutionary algo-

rithms – Decision trees – Bounded search algorithms 

– Fuzzy logic algorithms – Systems for visualisation 

of multidimensional data along with classical schemes 

of correlation, regression, and factor analysis. Arti-

ficial neural networks (ANNs) allow the learning 

process to establish relationships between input data 

and output characteristics of any degree of 

complexity. These models consist of interconnected 

groups of artificial neurons, which are, in fact, process 

and transform input data according to the neuronal 

architecture. 

In most cases, ANNs are adaptive systems that 

change their structure under the influence of 

information flows entering the network during the 

learning process. The goal of training is to find the 

coefficients of connections between neurons, which 

determine the ability of a neural network to identify 

hidden relationships between input and output values. 

After training, the network can predict new data based 

on a limited sample of known relationships between 

input and output values.  

 

2. Azeotrope prediction by artificial neural 

networks 

          

The rate of global warming has set the task of 

accelerating the phase-out of ozone-depleting sub-

stances in all areas of activity. The demands of the 

world community have posed a serious scientific and 

technical challenge for refrigerant manufacturers. 

Attempts to find new working fluids that would 

combine the best energy and environmental perfor-

mance led to the fact that binary mixtures became the 

most promising substances. Among this class of 

substances, azeotropic mixtures show significant 

advantages over zeotropic mixtures since the differ-

rence in the composition of the vapour and liquid 

phases leads to a negative impact on the efficiency of 

the cycles. 

The article discusses a general approach to pre-

dicting the appearance of azeotropy in binary mixtu-

res, which does not require cumbersome calculations 

of vapour-liquid equilibrium and provides valuable 

information on azeotropic liquids. An azeotrope is a 

mixture of two or more pure compounds (chemicals) 

in such a ratio that its composition cannot be changed 

by simple distillation. When an azeotrope is boiled, 

the resulting vapour has the same ratio of constituents 

as the original mixture of liquids. The word azeotrope 

comes from the Greek words "α ζειν τρόπος", 

meaning "no change on boiling". 

The desire of refrigerant manufacturers to create 

an "ideal" fluid, which would simultaneously combine 

conflicting indicators, such as 
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• environmental (natural origin, low global war-

ming potential (GWP), zero ozone depletion potential 

(ODP), non-flammable and non-toxic as well as non-

corrosive); 

• economic (low price); 

• energy efficiency (high critical temperature, 

good solubility with refrigerant oil, low triple point, 

acceptable thermophysical properties, etc.).    

It is clear that the fact among pure substances 

such a fluid does not exist. 

 

3. Global phase behaviour of binary refri-

gerants  

 

A theoretical analysis of the topology of phase 

diagrams is a handy tool for understanding the 

phenomena of phase equilibrium observed in multi-

component refrigerant blends. The pioneering work of 

van Konynenburg and Scott [11] demonstrated that 

the van der Waals one fluid model has vast possibi-

lities of qualitative reproducing the main types of pha-

se diagrams of binary fluids. The proposed classifi-

cation was successful and is now used to describe the 

different types of phase behaviour in binary mixtures. 

Conventional phase diagrams visualize the state of a 

substance as a function of temperature T, pressure p, 

and component concentration x. Therefore, they are 

used as a tool for visual analysis of the physical 

picture of the solubility phenomena. These variables 

are inherently different. Pressure and temperature are 

the "field" variables that are the same for all phases 

coexisting in equilibrium. The molar fraction is the 

"density" that is in principle different for different 

phases. Global phase diagrams of binary mixtures 

represent boundaries between different types of phase 

behaviour in a dimensionless space of equation of 

state parameters. For the first time, the idea of 

mapping the surface of phase equilibria onto the space 

of field variables, i.e., parameters of an equation of 

state, was proposed by van der Waals. The boundaries 

of the global phase diagrams (tricritical points (TCPs), 

double critical endpoints (DCEPs), azeotropic line, 

etc.) divide the space of model parameters into the 

regions that correspond to the different types of phase 

behaviour. The mapping of the global surface of a 

thermodynamic equilibrium onto the space of para-

meters of an equation of state is the most extensive 

and sequential system of criteria for predicting the 

phase behaviour of a binary mixture. The types of 

phase behaviour within the Van Konynenburg and 

Scott classification scheme of interest are character-

rised (Fig. 1). Contrary to apparent ideas, it turns out 

that the lines connecting the critical points of pure 

components are not continuous, and the picture of the 

phase behaviour of solutions is not limited to the 

relatively simple diagrams shown in Fig. 1.  

 

 
Figure 1 – The main types of the phase  

behaviour of binary mixtures in the  

coordinates pressure-temperature  

 

It was found that there are 6 main types of the 

phase behaviour of binary solutions, which have been 

experimentally confirmed. 

• Type I: a single permanent critical line 

between Cl and C2; 

• Type II: one critical line connecting Cl and C2, 

another line going from Cm to a critical endpoint; 

• Type III: one critical line going from Cl to an up-

per critical endpoint, another line going from C2 to Cm; 

Type III-H: a subclass of III having hetero-

azeotropic three-phase curve. 

Type III-A: a subclass of III with a genuine 

positive azeotropic line. 

• Type IV: one critical line going from Cl to an 

upper critical endpoint, a second critical line is going 

from C2 to a lower critical endpoint, a third line is 

going from Cm to an upper critical endpoint. 

• Type V: similar to IV, but without the low-

temperature critical curve going to Cm. 

• Type V-A: a subclass of V with a simple 

negative azeotropic line. 

• Type VI: involving closed-loop liquid-liquid 

immiscibility at low temperatures and practically im- 
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possible for supercritical conditions.  

Here C1 and C2 are critical points of refrigerant 

liquid; Cm is a hypothetic critical point beyond the 

solidification line.  

At present, the topological analysis of equili-

brium surfaces of binary fluid systems contains 26 

singularities and 56 scenarios of evolution of the p-T 

diagrams [12].  

 

4. Azeotrope classifiers 

 

To describe the thermodynamic and phase 

behaviour of the binary fluids in this study, we use the 

one fluid model of the Redlich and Kwong (RK) [13] 
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where R is the universal gas constant and ν is the 

molar volume; the model parameters a and b depend 

on the molar composition of xi and xj for the 

components i and j. The respective model parameters 

a and b are determined by quadratic dependences on 

composition and classical combining rules for the 

different pairs of interacting molecules aij and bij: 
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Global phase diagrams of binary fluids represent 

the boundaries between different types of phase 

behaviour in dimensionless parameter space. At pre-

sent, the topological analysis of equilibrium surfaces 

of binary fluid systems contains 26 singularities and 

56 scenarios of evolution of the p-T diagrams [12]. 

Global phase diagrams of binary fluids represent the 

boundaries between different types of phase behaviour 

in dimensionless parameter space. The dimensionless 

coordinates depend on the model of the equation of 

state; however, usually, they are represented by ana-

logy with the coordinates introduced by van Konynen-

burg and Scott [11]: 
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Global phase diagrams for all realistic models 

have a very similar structure, particularly for mole-

cules of the same size. One may obtain the relation-

ships for azeotropy boundaries from the global phase 

diagram [shaded A (Azeotropy) and H (Hetero-

azeotropy)] regions in Fig. 2. 

 

 
Figure 2 – Global phase diagram of the  

RK model classifier (Z3 = Z4 = 0) 

 

The above azeotropic boundaries are straight 

lines in the (Z1, Z2)-plane that crosses at a single point 

near the centre for equal-sized molecules. It opens the 

opportunity for obtaining the series of inequalities to 

separate azeotropic and zeotropic regions of the global 

phase diagram. The selection criterion for azeotrope 

for the RK one fluid equation of state for binary 

mixture in global phase diagram variables [14] 
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where the upper signs «+» or «-» correspond to the 

value of the composition of the critical azeotropic 

point at xc = 0, the lower at xc = 1. According to 

equation (6), in the Z1 - Z2 plane, at fixed values Z3 

and Z4, the boundary that separates the zeotropic and 

azeotropic states is a straight line). If a characteristic 
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point is located in the northern or southern quadrants 

(Fig. 2), azeotropy phenomena should appear in the 

binary mixture. 

For example, in the simplest case, for the van der 

Waals equation of state, the critical constants are 

related to the geometric (free volume – b) and energy 

parameters (a) well-known relations, which are found 

from the critical conditions. The boundaries separa-

ting the azeotropic and zeotropic states are determined 

by a system of thermodynamic equations [15], [16]. 

The relationship includes all the variety of azeotropic 

phenomena in binary mixtures, including azeotropic 

endpoint, critical azeotropic point, double azeotropic 

endpoint, azeotropic states in the so-called shield 

region and some others. A detailed list of the features 

of azeotropic states arising in two-component systems 

is given in [17]. In order to isolate the azeotropic re-

gions, it is necessary to know the equation of state p 

(T, V, x) of the mixture and to map the above deriva-

tives to a set of critical parameters of the components. 

Here we consider the cubic equations of state for a 

mixture in the one-fluid approximation, where R is the 

universal gas constant. Parameters a and b of the 

mixture, depending on the molar compositions xi and 

xj of components i and j include parameters and, as 

well as adjustable coefficients kij and lij, which chara-

cterise the imperfection of the solution as a result of 

intermolecular interactions between components i and 

j. Dimensionless variables, on which the thermody-

namic surface of the mixture is mapped, is written 

either as a combination of parameters of the equation 

of state of pure components: or through the corre-

sponding critical constants (Tc1, Tc2, Pc1, Pc2), as well 

as energy (k12) and geometric (l12) parameters of the 

interaction between the two components. 

To construct artificial neural networks, models of 

linear networks and networks with backpropagation of 

an error were applied. The values of the critical tem-

perature, critical pressure, and the acentricity factor 

(or normal boiling point) (Tci, Pci, Ωi) for each of the 

components were used as the input vector (Fig. 3). 

The training was carried out using the standard 

algorithms of the Neural Network Toolbox package of 

the MATLAB program. 

Reliability of the predictions of azeotropic beha-

viour in the binary mixtures of the refrigerants using 

neural networks relies on the choice of output value, 

which classifies mixtures as the azeotropic. We assu-

me implicitly that the model contains submodels, 

including equation of state, mixing rules, thermody-

namic relationships, neural networks models, phase 

equilibrium data, etc. Prediction of azeotrope can be 

obtained from the critical parameters and acentric 

factors of mixture’s components. The algorithm is as 

follows: critical parameters and acentric factors for 

pure components are provided, and binary interaction 

parameter k12 (output value) is determined by neural 

network model and criterion of the azeotrope is 

calculated to classify an azeotrope membership [14]. 

                                 k12  

 

 
      Tc1     Pc1       Ω1                             Tc2       Pc2     Ω2 

Figure 3 – The inputs of simulated neural network 

 

The data on binary azeotropes were grouped into 

four subsets to obtain interaction coefficients using 

the available literature and experimental sources (bi-

nary synthetic refrigerants, hydrocarbon-synthetic ref-

rigerants, and R744, hydrocarbons, R717, hydro-

carbons). The correlation for k12 does not depend on 

the chemical structure of components. The subsets 

were selected to avoid the membership for allocated 

classes of substances to select training and validation 

sets. To demonstrate the universal approach, we inclu-

ded the systems formed with clearly different chemi-

cal nature of the components. Critical parameters and 

acentric factors applying to mixture components, as 

well as corresponding values k12 were included in the 

training set, which contained the data set for such 

systems as: R32, R143a, R32, R116, R32, R125, R32, 

R290, R23, R116, R744, and R125, R717 [18]. In 

addition, experimental data on phase equilibria for the 

temperature range 220-300K at different feeds were 

obtained to find interaction parameters of the RK 

equation of state for mixtures of natural and alterna-

tive refrigerants (CFCs, HCFCs, HCCs, HFCs, HFOs, 

hydrocarbons, ethers, and other). All potential cases of 

azeotropy appearance/absence are described for 1540  
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samples of natural and synthetic refrigerants. 

 

5. Artificial neural network approach for de-

termination of the organic rankine cycle COP 

 

The sustainable development principle considers 

an integrated and balanced solution of the ecological, 

economic, social, and cultural challenges arising from 

the design processes. Power generation utilizing the 

low-temperature heat sources (320-570 K) as biomass, 

thermal solar, or waste heat has been becoming more 

and more significant during last few decades. ORC 

uses organic working fluids, obtaining higher thermal 

efficiency than with water used in traditional Rankine 

Cycles, because of the thermodynamic properties of 

these fluids. The problem of selection of the working 

media is intricately linked with a advanced techno-

logies which incorporate concept of sustainable deve-

lopment. Challenge of the working fluid selection has 

been treated using recent achievements of molecular 

theory and experimental studies.  

The selection of the working fluids with pre-

defined set of properties as inter alia greenhouse 

effect, flammability, toxicity, thermodynamic proper-

ties, performance specifications is one of the most 

important stages in simulation and the process design. 

Strategy for working fluid selection is an inverse 

problem of incorporating the technological perfor-

mance parameters directly into the design of the ORC 

plants. However, algorithms for searching optimal 

working media that possess optimal combination of 

the properties can be formalized mathematically based 

on the multicriteria decision-making theory. The 

generalized efficiency criterion can be represented for 

the whole system by the vector K, including the local 

criteria Ki as the components for mapping the multiple 

requirements imposed on the ORC system. A final 

decision is defined as the intersection of all fuzzy 

criteria. The fuzzy criteria are represented by its 

membership function μ(Х). 

The membership function can be selected of a 

linear or nonlinear type upon the nature of the 

problem. One of the possible fuzzy convolution sche-

mes is presented below. Maximum (minimum) values 

for each criterion Ki are established via scalar 

maximization (minimization). Results are denoted as 

"perfect" X
0
 points. 

The matrix [Т], where the diagonal elements are 

"perfect" points, is defined as follows: 
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Minimum and maximum for criteria are defined: 
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The membership functions are assumed for all 

fuzzy goals as follows: 
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A decision is determined as the intersection of all 

fuzzy criteria under constraints represented by its 

membership functions. The solution of the multi-

criteria problem discloses the meaning of the optima-

lity operator and depends on the decision maker 

experience and problem understanding. The criterion 

is written in the C-metrics form 
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         (10) 

 

The level of energy efficiency (Fig. 4) using the 

HFE – C5H2F6O2 looks more attractive among HFEs: 

(CF3OCF2H – HFE-125), (CHF2OCHF2 – HFE-134), 

(CF3OCH3 – HFE-143a), (CF3OCFHCF3 – HFE-227me), 

(CF3CHFCF2OCH3 – HFE-245mf), (n- C3F7OCH3 – 

HFE-700-347mcc), (C4F9OCH3 – HFE-7100 (HFE-

449mccc)), and (C4F9OC2H5 – HFE-7200).  

Working fluid selection problem has been tackled 

using achievements of molecular theory, engineering 

experience and experimental studies. The COP com-

parison among the ORC with HFE working fluids 

(Fig. 4) shows the maximum value 4.1% for C5H2F6O2 

and minimum COP – 3.6% for C2HF5O. 
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Figure 4 – COP of the organic Rankine cycle with 

ANN as a function of boiling point (Tb) and critical 

point (Tc) 

 

6. Conclusions 

A new approach to predicting the formation of 

the azeotropic state in a mixture is developed and 

presented. This approach employs synergy of neural 

networks and global phase diagram methodologies to 

correlate azeotropic data for binary mixtures based 

only on critical properties and acentric factor of the 

individual components in refrigerant mixtures and 

does not require intensive calculations. 

The most reliable and straightforward way to 

transform heat into mechanical work is to apply the 

Rankine cycle. The typical working fluid for such 

high-temperature cycles is water vapour. Low-tem-

perature heat sources (industrial heat discharges, geo-

thermal sources, solar ponds, etc.) can also be con-

verted into work if organic substances with a normal 

boiling point are lower than the boiling point for water 

vapour, are used as working fluids.  

This study is one of the first attempts to apply the 

methodology of tailored, smart substances to select 

optimal working fluid for the ORC. Construction of 

ANN correlations between information attributes of 

the working fluids and efficiency criteria of the 

Rankine cycle narrows the area of compromise in the 

space of competitive economic, environmental, and 

technological criteria. 
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Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для еко-

логічно чистих технологій вимагає більш динамічного використання інформаційних технологій 

(ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне на-

вчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, 

які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості по-

дібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки 

нових речовин. Різні обчислювальні інструменти були застосовані для вирішення актуальної про-

блеми - прогнозування фазової поведінки soft речовин під значними екзогенними впливами. Метою 

цього дослідження є розробка нової точки зору щодо прогнозування термодинамічних властивос-

тей м'яких речовин за допомогою методології, яка передбачає штучні нейронні мережі (ANN) та 

глобальну фазову діаграму для забезпечення кореляції між структурою та властивостями. В ро-

боті представлено застосування машинного навчання в інженерній термодинаміці для прогнозу-

вання азеотропної поведінки бінарних холодоагентів і визначення коефіцієнта продуктивності 

(COP) для роботи органічного циклу Ренкіна (ORC). За даними про кипіння та критичні точки. 

Запропоновано новий підхід до прогнозування утворення азеотропного стану в суміші, який роз-

роблено та представлено. Цей підхід використовує синергію нейронних мереж та методології 

глобальної фазової діаграми для кореляції азеотропних даних для бінарних сумішей на основі лише 

критичних властивостей та ацентричного коефіцієнта окремих компонентів у сумішах холодоа-

гентів. Це не вимагає інтенсивних розрахунків. Побудова кореляцій ANN між інформаційними ат-

рибутами робочих рідин та критеріями ефективності циклу Ренкіна звужує область компромісів 

у просторі конкурентних економічних, екологічних та технологічних критеріїв. 

Ключові слова: Машинне навчання; Холодоагенти; Прогнозування азеотропного стану; Штучні 

нейронні мережі; Глобальна фазова діаграма; Органічний цикл Ренкіна; Коефіцієнт перетво-

рення; Термодинамічні властивості 
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