Po3gin 1. XonoaunbHa TexHika Ta eHeproTexHonorii

XOnoaunbHA TEXHIKA TA EHEPFOTEXHORNOTTI

VIIK 62.403

Machine learning for refrigerants properties

Sergiy Artemenko'*, Viktor Mazur?

120dessa National Academy of Food Technologies, 112 Kanatna str., Odessa, 65039, Ukraine

o< e-mail: 'sergey.artemenko@gmail.com
ORCID: *https://orcid.org/0000-0002-1398-1472

The interdisciplinary nature of new objectives aimed at the design of the working matters for environmen-
tally friendly technologies requires a more dynamic use of information technology (IT) to ensure proper
trade-off decisions under a competitive environment. Machine learning (ML) is the part of artificial intel-
ligence (Al) methodologies that uses algorithms that are not a direct solution to a problem but learning
through solutions to innumerable similar problems. Machine learning has explored a new path in the
study of the thermodynamic behavior of emerging substances. Various computational tools have been
provided with an effective approach to solving the actual problem of predicting the phase behavior of soft
substances under strong exogenous influences. The aim of this study is to develop a new perspective on
predicting the thermodynamic properties of soft substances using a methodology that provides artificial
neural networks (ANN) and a global phase diagram to ensure correlation between structure and proper-
ties. In this study, we present applications of machine learning in engineering thermodynamics to predict
azeotropic behaviour of binary refrigerants and determine the coefficient of performance (COP) for Or-
ganic Rankine Cycle (ORC) working media based on the data on boiling and critical points was studied.
A new approach to predicting the formation of an azeotropic state in a mixture, which is developed and
presented. This approach uses the synergy of neural networks and the global phase diagram methodology
to correlate azeotropic data for binary mixtures based only on the critical properties and the centric coef-
ficient of the individual components in refrigerant mixtures. It does not require intensive calculations.
The construction of ANN correlations between the information attributes of working fluids and the crite-
ria for the efficiency of the Rankin cycle narrows the scope of trade-offs in the space of competitive eco-
nomic, environmental and technological criteria.
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1. Introduction

The innovative nature of the modern economy
produces a breakthrough in the field of thermody-
namics. The interdisciplinary nature of new objectives
aimed at the design of the working matters for
environmentally friendly technologies requires a more
dynamic use of information technology (IT) to ensure
proper trade-off decisions under a competitive envi-
ronment. In this case, the competence and experience
of the experts are replaced by the "wisdom of many".
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There is a shift in motivation for research: from
traditional "just in case" to research "just in time."
Machine learning (ML) is the part of artificial
intelligence (Al) methodologies that uses algorithms
that are not a direct solution to a problem but learning
through solutions to innumerable similar problems.
The use of machine learning for the determination of
fluid property correlations recently was applied in the
study [1], equation of state for fluid properties was
generated by the machine learning approach in [2].
The presented examples of machine learning applica-
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tions in soft matter, including design of self-
assembling materials, nonlinear learning of protein
folding landscapes, high throughput antimicrobial
peptide design, and data-driven materials design
engines, are given in [3]. Prediction of activity coeffi-
cients with ML was performed in [4], a general-
purpose machine learning framework for predicting
properties of inorganic materials was presented in [5],
computer-aided synthesis planning is discussed in [6].
The neural network is one example of machine
learning algorithms applying to quantum physics [7],
physical chemistry [8] and [9]. Recent trends of
machine learning in the heat transfer sector are
reflected in applying renewable energy [10].

In this study, we present applications of machine
learning in engineering thermodynamics as an illu-
strative example of integration of data science para-
digms and thermodynamic approach to predict azeo-
tropic behaviour of binary refrigerants and determine
the coefficient of performance (COP) for Organic
Rankine Cycle (ORC) working media. The conven-
tional artificial neural networks approach was applied
to evaluate the data, capable of recognising complex
input-output relationships.

Data science is the modern direction in poorly
structured large data sets, in which hidden patterns
between variables are revealed. Data science algo-
rithms combine a wide range of scientific disciplines:
machine learning, statistics, artificial intelligence,
databases and others. The main methods and algo-
rithms of Data science include the following: artificial
neural networks, decision trees, symbolic rules,
nearest neighbour methods, and k-nearest neighbour,
support vector machine, Bayesian networks, including
the Apriori algorithm; evolutionary programming and
genetic algorithms, various methods of data visuali-
sation and many other methods.

Recently, estimates based on the theory of fuzzy
sets have become widespread. SVM (Support vector
machines) algorithm provides users with the most
robust and accurate method to solve machine-learning
problems. Linear or nonlinear regressions are often
used in modelling and predicting thermodynamic
properties. However, real-world problems do not fit
well-developed statistical methods for this case. The
main algorithms and solution methods are reduced to
the following: Statistical methods — Neural network
algorithms — Genetic algorithms — Evolutionary algo-
rithms — Decision trees — Bounded search algorithms
— Fuzzy logic algorithms — Systems for visualisation
of multidimensional data along with classical schemes

of correlation, regression, and factor analysis. Arti-
ficial neural networks (ANNSs) allow the learning
process to establish relationships between input data
and output characteristics of any degree of
complexity. These models consist of interconnected
groups of artificial neurons, which are, in fact, process
and transform input data according to the neuronal
architecture.

In most cases, ANNs are adaptive systems that
change their structure under the influence of
information flows entering the network during the
learning process. The goal of training is to find the
coefficients of connections between neurons, which
determine the ability of a neural network to identify
hidden relationships between input and output values.
After training, the network can predict new data based
on a limited sample of known relationships between
input and output values.

2. Azeotrope prediction by artificial neural
networks

The rate of global warming has set the task of
accelerating the phase-out of ozone-depleting sub-
stances in all areas of activity. The demands of the
world community have posed a serious scientific and
technical challenge for refrigerant manufacturers.
Attempts to find new working fluids that would
combine the best energy and environmental perfor-
mance led to the fact that binary mixtures became the
most promising substances. Among this class of
substances, azeotropic mixtures show significant
advantages over zeotropic mixtures since the differ-
rence in the composition of the vapour and liquid
phases leads to a negative impact on the efficiency of
the cycles.

The article discusses a general approach to pre-
dicting the appearance of azeotropy in binary mixtu-
res, which does not require cumbersome calculations
of vapour-liquid equilibrium and provides valuable
information on azeotropic liquids. An azeotrope is a
mixture of two or more pure compounds (chemicals)
in such a ratio that its composition cannot be changed
by simple distillation. When an azeotrope is boiled,
the resulting vapour has the same ratio of constituents
as the original mixture of liquids. The word azeotrope
comes from the Greek words "o Cewv Tpdmog",
meaning "no change on boiling".

The desire of refrigerant manufacturers to create
an "ideal" fluid, which would simultaneously combine
conflicting indicators, such as
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 environmental (natural origin, low global war-
ming potential (GWP), zero ozone depletion potential
(ODP), non-flammable and non-toxic as well as non-
corrosive);

» economic (low price);

+ energy efficiency (high critical temperature,
good solubility with refrigerant oil, low triple point,
acceptable thermophysical properties, etc.).

It is clear that the fact among pure substances
such a fluid does not exist.

3. Global phase behaviour of binary refri-
gerants

A theoretical analysis of the topology of phase
diagrams is a handy tool for understanding the
phenomena of phase equilibrium observed in multi-
component refrigerant blends. The pioneering work of
van Konynenburg and Scott [11] demonstrated that
the van der Waals one fluid model has vast possibi-
lities of qualitative reproducing the main types of pha-
se diagrams of binary fluids. The proposed classifi-
cation was successful and is now used to describe the
different types of phase behaviour in binary mixtures.
Conventional phase diagrams visualize the state of a
substance as a function of temperature T, pressure p,
and component concentration x. Therefore, they are
used as a tool for visual analysis of the physical
picture of the solubility phenomena. These variables
are inherently different. Pressure and temperature are
the "field" variables that are the same for all phases
coexisting in equilibrium. The molar fraction is the
"density" that is in principle different for different
phases. Global phase diagrams of binary mixtures
represent boundaries between different types of phase
behaviour in a dimensionless space of equation of
state parameters. For the first time, the idea of
mapping the surface of phase equilibria onto the space
of field variables, i.e., parameters of an equation of
state, was proposed by van der Waals. The boundaries
of the global phase diagrams (tricritical points (TCPs),
double critical endpoints (DCEPs), azeotropic line,
etc.) divide the space of model parameters into the
regions that correspond to the different types of phase
behaviour. The mapping of the global surface of a
thermodynamic equilibrium onto the space of para-
meters of an equation of state is the most extensive
and sequential system of criteria for predicting the
phase behaviour of a binary mixture. The types of
phase behaviour within the Van Konynenburg and
Scott classification scheme of interest are character-
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rised (Fig. 1). Contrary to apparent ideas, it turns out
that the lines connecting the critical points of pure
components are not continuous, and the picture of the
phase behaviour of solutions is not limited to the
relatively simple diagrams shown in Fig. 1.
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Figure 1 — The main types of the phase
behaviour of binary mixtures in the
coordinates pressure-temperature

It was found that there are 6 main types of the
phase behaviour of binary solutions, which have been
experimentally confirmed.

* Type I: a single permanent critical line
between C,and C;

» Type II: one critical line connecting C, and C,,
another line going from Cj, to a critical endpoint;

» Type llI: one critical line going from C, to an up-
per critical endpoint, another line going from C, to Cy;

Type IlI-H: a subclass of Il having hetero-
azeotropic three-phase curve.

Type 1lI-A: a subclass of Il with a genuine
positive azeotropic line.

» Type IV: one critical line going from C, to an
upper critical endpoint, a second critical line is going
from C, to a lower critical endpoint, a third line is
going from C,, to an upper critical endpoint.

* Type V: similar to IV, but without the low-
temperature critical curve going to Cy,.

* Type V-A: a subclass of V with a simple
negative azeotropic line.

» Type VI: involving closed-loop liquid-liquid
immiscibility at low temperatures and practically im-
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possible for supercritical conditions.

Here C; and C, are critical points of refrigerant
liquid; Cm is a hypothetic critical point beyond the
solidification line.

At present, the topological analysis of equili-
brium surfaces of binary fluid systems contains 26
singularities and 56 scenarios of evolution of the p-T
diagrams [12].

4. Azeotrope classifiers
To describe the thermodynamic and phase

behaviour of the binary fluids in this study, we use the
one fluid model of the Redlich and Kwong (RK) [13]

, )

where R is the universal gas constant and v is the
molar volume; the model parameters a and b depend
on the molar composition of x; and x; for the
components i and j. The respective model parameters
a and b are determined by quadratic dependences on
composition and classical combining rules for the
different pairs of interacting molecules a;;and bj:
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Global phase diagrams of binary fluids represent
the boundaries between different types of phase
behaviour in dimensionless parameter space. At pre-
sent, the topological analysis of equilibrium surfaces
of binary fluid systems contains 26 singularities and
56 scenarios of evolution of the p-T diagrams [12].
Global phase diagrams of binary fluids represent the
boundaries between different types of phase behaviour
in dimensionless parameter space. The dimensionless
coordinates depend on the model of the equation of
state; however, usually, they are represented by ana-
logy with the coordinates introduced by van Konynen-
burg and Scott [11]:
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Global phase diagrams for all realistic models
have a very similar structure, particularly for mole-
cules of the same size. One may obtain the relation-
ships for azeotropy boundaries from the global phase
diagram [shaded A (Azeotropy) and H (Hetero-
azeotropy)] regions in Fig. 2.
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Figure 2 — Global phase diagram of the
RK model classifier (Zz3 = Z4, = 0)

The above azeotropic boundaries are straight
lines in the (Z;, Z,)-plane that crosses at a single point
near the centre for equal-sized molecules. It opens the
opportunity for obtaining the series of inequalities to
separate azeotropic and zeotropic regions of the global
phase diagram. The selection criterion for azeotrope
for the RK one fluid equation of state for binary
mixture in global phase diagram variables [14]

L 1-7,

Z,=7Z,-0,67(1+ Zl)[lizg 1], (6)
where the upper signs «+» or «-» correspond to the
value of the composition of the critical azeotropic
point at x. = O, the lower at x. = 1. According to
equation (6), in the Z; - Z, plane, at fixed values Z;
and Z,4, the boundary that separates the zeotropic and
azeotropic states is a straight line). If a characteristic
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point is located in the northern or southern quadrants
(Fig. 2), azeotropy phenomena should appear in the
binary mixture.

For example, in the simplest case, for the van der
Waals equation of state, the critical constants are
related to the geometric (free volume — b) and energy
parameters (a) well-known relations, which are found
from the critical conditions. The boundaries separa-
ting the azeotropic and zeotropic states are determined
by a system of thermodynamic equations [15], [16].
The relationship includes all the variety of azeotropic
phenomena in binary mixtures, including azeotropic
endpoint, critical azeotropic point, double azeotropic
endpoint, azeotropic states in the so-called shield
region and some others. A detailed list of the features
of azeotropic states arising in two-component systems
is given in [17]. In order to isolate the azeotropic re-
gions, it is necessary to know the equation of state p
(T, V, x) of the mixture and to map the above deriva-
tives to a set of critical parameters of the components.
Here we consider the cubic equations of state for a
mixture in the one-fluid approximation, where R is the
universal gas constant. Parameters a and b of the
mixture, depending on the molar compositions x; and
X; of components i and j include parameters and, as
well as adjustable coefficients k; and Ij;, which chara-
cterise the imperfection of the solution as a result of
intermolecular interactions between components i and
Jj. Dimensionless variables, on which the thermody-
namic surface of the mixture is mapped, is written
either as a combination of parameters of the equation
of state of pure components: or through the corre-
sponding critical constants (T¢1, Teo, Pc1, Peo), as well
as energy (ki2) and geometric (ly;) parameters of the
interaction between the two components.

To construct artificial neural networks, models of
linear networks and networks with backpropagation of
an error were applied. The values of the critical tem-
perature, critical pressure, and the acentricity factor
(or normal boiling point) (T, Pg, €;) for each of the
components were used as the input vector (Fig. 3).
The training was carried out using the standard
algorithms of the Neural Network Toolbox package of
the MATLAB program.

Reliability of the predictions of azeotropic beha-
viour in the binary mixtures of the refrigerants using
neural networks relies on the choice of output value,
which classifies mixtures as the azeotropic. We assu-
me implicitly that the model contains submodels,
including equation of state, mixing rules, thermody-
namic relationships, neural networks models, phase
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equilibrium data, etc. Prediction of azeotrope can be
obtained from the critical parameters and acentric
factors of mixture’s components. The algorithm is as
follows: critical parameters and acentric factors for
pure components are provided, and binary interaction
parameter ki, (output value) is determined by neural
network model and criterion of the azeotrope is
calculated to classify an azeotrope membership [14].

Figure 3 — The inputs of simulated neural network

The data on binary azeotropes were grouped into
four subsets to obtain interaction coefficients using
the available literature and experimental sources (bi-
nary synthetic refrigerants, hydrocarbon-synthetic ref-
rigerants, and R744, hydrocarbons, R717, hydro-
carbons). The correlation for ki, does not depend on
the chemical structure of components. The subsets
were selected to avoid the membership for allocated
classes of substances to select training and validation
sets. To demonstrate the universal approach, we inclu-
ded the systems formed with clearly different chemi-
cal nature of the components. Critical parameters and
acentric factors applying to mixture components, as
well as corresponding values ki, were included in the
training set, which contained the data set for such
systems as: R32, R143a, R32, R116, R32, R125, R32,
R290, R23, R116, R744, and R125, R717 [18]. In
addition, experimental data on phase equilibria for the
temperature range 220-300K at different feeds were
obtained to find interaction parameters of the RK
equation of state for mixtures of natural and alterna-
tive refrigerants (CFCs, HCFCs, HCCs, HFCs, HFOs,
hydrocarbons, ethers, and other). All potential cases of
azeotropy appearance/absence are described for 1540
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samples of natural and synthetic refrigerants.

5. Artificial neural network approach for de-
termination of the organic rankine cycle COP

The sustainable development principle considers
an integrated and balanced solution of the ecological,
economic, social, and cultural challenges arising from
the design processes. Power generation utilizing the
low-temperature heat sources (320-570 K) as biomass,
thermal solar, or waste heat has been becoming more
and more significant during last few decades. ORC
uses organic working fluids, obtaining higher thermal
efficiency than with water used in traditional Rankine
Cycles, because of the thermodynamic properties of
these fluids. The problem of selection of the working
media is intricately linked with a advanced techno-
logies which incorporate concept of sustainable deve-
lopment. Challenge of the working fluid selection has
been treated using recent achievements of molecular
theory and experimental studies.

The selection of the working fluids with pre-
defined set of properties as inter alia greenhouse
effect, flammability, toxicity, thermodynamic proper-
ties, performance specifications is one of the most
important stages in simulation and the process design.
Strategy for working fluid selection is an inverse
problem of incorporating the technological perfor-
mance parameters directly into the design of the ORC
plants. However, algorithms for searching optimal
working media that possess optimal combination of
the properties can be formalized mathematically based
on the multicriteria decision-making theory. The
generalized efficiency criterion can be represented for
the whole system by the vector K, including the local
criteria K; as the components for mapping the multiple
requirements imposed on the ORC system. A final
decision is defined as the intersection of all fuzzy
criteria. The fuzzy criteria are represented by its
membership function p(X).

The membership function can be selected of a
linear or nonlinear type upon the nature of the
problem. One of the possible fuzzy convolution sche-
mes is presented below. Maximum (minimum) values
for each criterion K; are established via scalar
maximization (minimization). Results are denoted as
"perfect” X° points.

The matrix [7], where the diagonal elements are
"perfect™ points, is defined as follows:

K(X?) Ky(X0)eo Ko(X?)
S IR Sl
Ki(XR) Ka(Xp)e Ki(XR))

Minimum and maximum for criteria are defined:

K min =min K; (X7)=K(X’) i=1..n; ©
K™ =max K (X?),i=1..

j J

The membership functions are assumed for all
fuzzy goals as follows:

Kmax’ « K (X)> K™
R (X)={——"if K™ <K, <K™ . (9)
i KimaX _ Kimln f Ki (X ) S Kimin

y

A decision is determined as the intersection of all
fuzzy criteria under constraints represented by its
membership functions. The solution of the multi-
criteria problem discloses the meaning of the optima-
lity operator and depends on the decision maker
experience and problem understanding. The criterion
is written in the C-metrics form

(10)

N
Ke =Zl:|“i|-

The level of energy efficiency (Fig. 4) using the
HFE — CsH,FO, looks more attractive among HFEs:
(CF30CF;H — HFE-125), (CHF,OCHF, — HFE-134),
(CF30CH; — HFE-143a), (CF;OCFHCF; — HFE-227me),
(CF;CHFCF,0OCH; — HFE-245mf), (n- C3F,OCH; —
HFE-700-347mcc), (C4,FeOCH; — HFE-7100 (HFE-
449mccc)), and (C4F;OC,Hs — HFE-7200).

Working fluid selection problem has been tackled
using achievements of molecular theory, engineering
experience and experimental studies. The COP com-
parison among the ORC with HFE working fluids
(Fig. 4) shows the maximum value 4.1% for CsH,FsO,
and minimum COP — 3.6% for C,HF:0.
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ANN as a function of boiling point (T,) and critical
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6. Conclusions

A new approach to predicting the formation of
the azeotropic state in a mixture is developed and
presented. This approach employs synergy of neural
networks and global phase diagram methodologies to
correlate azeotropic data for binary mixtures based
only on critical properties and acentric factor of the
individual components in refrigerant mixtures and
does not require intensive calculations.

The most reliable and straightforward way to
transform heat into mechanical work is to apply the
Rankine cycle. The typical working fluid for such
high-temperature cycles is water vapour. Low-tem-
perature heat sources (industrial heat discharges, geo-
thermal sources, solar ponds, etc.) can also be con-
verted into work if organic substances with a normal
boiling point are lower than the boiling point for water
vapour, are used as working fluids.

This study is one of the first attempts to apply the
methodology of tailored, smart substances to select
optimal working fluid for the ORC. Construction of
ANN correlations between information attributes of
the working fluids and efficiency criteria of the
Rankine cycle narrows the area of compromise in the
space of competitive economic, environmental, and
technological criteria.
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Midcoucyunninapruil xapakxmep HOBUX Yinell, CHPAMOBAHUX HA PO3POOKY poOOUUX Mmamepianie OJid eKo-

JIO2IYHO YUCTMUX MEXHONO02IU euMazae OLb OUHAMINHO20 BUKOPUCMAHHA THHOPpMAYIiHUX MEXHON02Il

(IT) Onsa 3abe3neueHHs: NPABULLHUX KOMIPOMICHUX PIULEHb V) KOHKYPEHMHOMY cepedosuui. Mawunne Ha-

suanus (ML) — ye uacmuna memodonoziti wmyynozo inmenekmy (Al), axa suxopucmosye anreopummu,

SKI He € NPAMUM PileHHAM NPoOiieMU, a HABYAIOMbCS 3 OONOMO20I0 PilieHb He3iUeHHOI KiIbKOCmI no-

0ibHux npobdaem. Mawunne Ha8UaHHS BIOKPUNLO HOBULL ULTAX Y OOCHIONCEHHT MePMOOUHAMIYHOL NOBEOTHKU

HOBUX pevosun. Pizni obuucniosanvii incmpymenmu 6yau 3acmocosani Ojisi GUPIUEHHST AKMYAIbHOT npo-

Onemu - NPOcHO3Y8AHHS (Pa3060i N0GEITHKU SOft peuosuH Ni0 3HAYHUMU eK302eHHUMU enausamu. Memorw

Yb020 OOCTIONCEHHS € PO3POOKA HOBOT MOYKU 30PY WOOO NPOSHO3YEAHHS MEPMOOUHAMIYHUX 61ACMUBOC-

metl M'SKUX pevosul 3a 00NOMO2010 Memoooo2ii, axa nepedbauac wmyyHi neuponni mepesici (ANN) ma

enobanvry pazosy diazpamy 015 3a0e3neyents Kopeisyii Mise cmpykmyporo ma eracmugocmsamu. B po-

bomi npedcmasieHo 3aCMOCYBAHHA MAWUHHO20 HABYAHHA 8 IHIHCEHEPHIll MepMOOUHamMiyi OJisl NPOSHO3Y-

6AHHA A3€0MPONHOI NOGEOIHKYU OIHAPHUX XON000a2eHmi6 i GUIHAYEHHS KoeiyicHma npooyKMuUuGHOCHI

(COP) ons pobomu opeaniunozo yuxny Penxina (ORC). 3a oanumu npo KuninHs ma KpumuuHi mouxu.

3anpononosano Ho6Ul NiOXi0 00 NPOSHO3YBAHHS YIMBOPEHHS A3e0MPONHO20 CTNANY 6 CYMiwti, KUl Po3-

pobneno ma npeocmasneno. e nioxio euxopucmogye cunepeiio HeupOHHUX Mepedc ma Memooonozii

2nobanvroi ¢azoeoi diacpamu 0ns Kopenayii a3eomponHux 0anux 0 OIHAPHUX cyMiuieli Ha OCHO8I auule

KPUMUYHUX 61ACMUBOCTel] Ma AYEeHMPUYHO20 KOeDIYieHma oKpemux KOMNOHEHMIB V) CYMIUAX X01000a-

eenmig. Lle ne eumacae inmencusnux pospaxyukis. Ilooyoosa xopenayiti ANN midc ingpopmayitinumu am-

pubymamu pobouux pioun ma kpumepisimu egpexmusnocmi yukiy Penxina 3eyoicye obnacms komnpomicie

Y HPOCMOPI KOHKYPEHMHUX eKOHOMIYHUX, eKOAOSTYHUX MA MEXHON0IYHUX Kpumepiis.

Kniouoei cnosa. Mawunne nasuanus; Xonoooazenmu, Ilpoenosysanns azeomponunozo cmawy, Lllmyuni

Heuponni mepeoci; Inobanvna gazosa odiacpama; Opeaniunuii yuxn Penxina;, Koegiyienm nepemeo-

pennst; TepmoouHamiumi e1acmusocmi
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