Refrigeration Engineering and Technology

ISSN-print: 0453-8307
ISSN-online: 2409-6792
ISO: 26324:2012
Архiви

КОНДЕНСАЦИЯ ВНУТРИ ГЛАДКИХ ГОРИЗОНТАЛЬНЫХ ТРУБ. СРАВНЕНИЕ ТЕОРЕТИЧЕСКИХ РЕШЕНИЙ И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

##plugins.themes.bootstrap3.article.main##

В. В. Горін

Анотація

В работе представлен обзор работ, включающий в себя результаты теоретических и экспериментальных исследований конденсации внутри горизонтальных труб. Показано сравнение теоретических решений с экспериментальными данными.
Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
Горін, В. В. (2017). КОНДЕНСАЦИЯ ВНУТРИ ГЛАДКИХ ГОРИЗОНТАЛЬНЫХ ТРУБ. СРАВНЕНИЕ ТЕОРЕТИЧЕСКИХ РЕШЕНИЙ И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ. Refrigeration Engineering and Technology, 52(6). https://doi.org/10.15673/ret.v52i6.467
Розділ
ХОЛОДИЛЬНА ТЕХНІКА

Посилання

1. Nusselt, W., Die Oberflächenkondensation des Wasserdampfes, Zeitschrift VDI, 60 (1916), pp. 541-546, 568-575

2. Bae, S., et al., Refrigerant forced convection condensation inside horizontal tubes. Report No. DSR-79760-59, Massachusetts Institute of Technology, Cambridge, MA, 1968

3. Bae, S., et al., Refrigerant forced convection condensation inside horizontal tubes. Report No. DSR-79760-64, Massachusetts Institute of Technology, Cambridge, MA, 1969

4. Traviss, D. P. et al., Forced convection condensation inside tubes. Report No. DSR-72591-74, Massachusetts Institute of Technology, Cambridge, MA, 1971

5. Kwon, J.T., et al., A modeling of intube condensation heat transfer for a turbulent annular film flow with liquid entrainment, International Journal of Multiphase Flow, 27 (2001), pp. 911-928

6. Kosky, P. G., Staub F. W., Local condensing heat transfer coefficients in the annular flow regime, AIChE Journal, 17 (1971), 5, pp. 1037-1043

7. Sardak, A.I., et al., Regularities of steam laminar condensation inside horizontal tube (in Russian), Teploenergetika, 8 (1984), pp. 59-62

8. Rifert, V. G., et al., Flow modes of phase and heat transfer during vapour condensation inside horizontal tubes (in Russian), Izv. Akad. Nauk SSSR, 4 (1985), pp. 101-109

9. Rifert, V. G., Heat transfer and flow modes of phases in laminar film vapour condensation inside a horizontal tube, Int. J. Heat Mass Transfer, 31 (1988), 3, pp. 517-523

10. Rifert, V. G., Dolinskij, O. A., Influence of dynamic effect of moving steam on behavior and regimes of in-tube condensation, Proceedings, Tr. of 5th CAC, Hunga-ry, 1989, Vol. 1, pp. 359-363

11. Cavallini, A., et al., Experimental investigation on condensation heat transfer and pressure drop of new refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int. J. Refrig, 21 (2001), pp. 73–87

12. Cavallini, A., Zecchin, R. A., A dimensionless cor-relation for heat transfer in forced convection condensa-tion, Proceedings, Sixth International Heat Transfer Conference, 1974, vol. 3, pp. 309–313

13. Agra, O., Teke, I., Determination of the heat transfer coefficient during annular flow condensation in smooth horizontal tubes, J. of thermal Science and Technology, 32 (2012), 2, pp. 151-159

14. Hulburt, E. T., Newell, T. A., Two phase modeling of refrigerant mixtures in the annular/stratified flow regimes, ACRC Technical Report 96, 1996.

15. Shah, M. M., An improved and extended general correlation for heat transfer during condensation in plain tubes, ASHRAE Transactions, 15 (2009), 5, pp. 889–913

16. Thome, J. R., et al., Condensation in horizontal tubes. Part 2: New heat transfer model based on flow regimes, Int. J. Heat Mass Transfer, 46 (2003), pp. 3365–3387

17. Dalkilic, A. S., Condensation pressure drop characteristics of various refrigerants in a horizontal smooth tube, International Communications in Heat and Mass Transfer, 38 (2011), pp. 504-512

18. Rifert, V. G., Zadiraka, V. Y., Condensation of steam inside a smooth and profiled horizontal tube (in Russian), Teploenergetika, Moscow, 8 (1978), pp. 77-88

19. Cavallini A., et al., Condensation of refrigerants in smooth tubes: a new heat transfer model for heat exchanger design, Proceedings, 3-rd International Conference on Heat Transfer, Fluid Mechanics and Thermody-namics, Cape Town, South Africa, 21-24 June 2004

20. Vollrath, J. E., et al., An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of pure ammonia, Report No. ACRC CR-51, University of Illinois at Urbana-Champaign, 2003

21. Ananiev, E. P., et al., Heat transfer in the presence of steam condensation in a horizontal tube, Int. Developments in Heat Transfer, 2 (1961) p. 290

22. Boyko, L. D., Kruzhilin, G. N., Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes, Int. J. Heat Mass Transfer, 10 (1967), pp. 361-373

23. Boyko, L. D., Heat Transfer in Condensing Vapor inside Tubes (in Russian), Heat Transfer in the Elements of Power Plants, (1966), pp. 197-212

24. Seong-Su Jeon, et al., Assessment of horizontal in-tube condensation models using MARS code. Part II: Annular flow condensation, Nuclear Engineering and Design, 262 (2013), pp. 510–524

25. Cavallini, A., et al., Condensation inside and outside smooth and enhanced tubes – a review of recent research. International Journal of Refrigeration, 26 (2003), pp. 373-392

26. Tandon, T.N., et al., Heat transfer during forced convection condensation inside horizontal tube, International Journal of refrigeration, 18 (1995), 3, pp. 210-214

27. Fujii, T., Enhancement to condensing heat transfer – new developments, J. Enhanced Heat Transfer, 2 (1995), pp. 127–137

28. Dobson, M. K., et al., Heat transfer and flow regimes during condensation in horizontal tubes, ACRC Technical Report No. 57, University of Illinois at Urbana-Champaigh, 1994

29. Chato, J. C., Laminar condensation inside horizontal and inclined tubes, ASHRAE J., 4 (1962), pp. 52–60

30. Akers, W. W., Rosson, H. F., Condensation inside a horizontal tube, Chem. Eng. Progr. Symp., 56 (1960), pp. 145–149

31. Rosson, H. F., Meyers, J. A., Point of values of condensing film coefficients inside a horizontal tube. Chem. Eng. Prog. Symp., 61 (1965) pp. 190–199

32. Jaster, H., Kosky, P. G., Condensation in a mixed flow regime, Int. J. Heat Mass Transfer, 19 (1976) pp. 95–99

33. Sweeney, K. A., Chato, J. C., The heat transfer and pressure drop behavior of a zeotropic refrigerant mixture in a microfinned tube, M.S. Thesis, University of Illinois at Urbana-Champaign, 1996

34. Chen, S. L., et al., General film condensation correlations, Exp.Heat Transfer, 1 (1987), pp. 93–107

35. Moser, K. W., et al., A new equivalent Reynolds number model force condensation in smooth tubes, J. Heat Transfer, 120 (1998) pp. 410–417

36. Dobson, M. K., Chato, J. C., Condensation in Smooth Horizontal Tubes, Journal Heat Transfer, 120 (1998), pp. 193-213
37. Bivens, D.B., Yokozeki, A. Heat transfer coefficient and transport properties for alternative refrigerants, Pro-ceedings, 1994 Int. Refrigeration Conference, Purdue, Indiana, 1994, pp. 299-304

38. Tang, L., et al., Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410A refrigerants. Part II: Design equations, Journal of Enhanced Heat Transfer, 7 (2000), pp. 311–325

39. Shah, M. M., A general correlation for heat transfer during film condensation inside pipes, Int. J. Heat Mass Transfer, 22 (1979), pp. 547-556. DOI: https://doi.org/10.1016/0017-9310(79)90058-9

40. Akers, W. W., et al., Condensing heat transfer within horizontal tubes, Chem. Ehg. Progress, Symposium Se-ries, 9 (1959), p. 171

41. Hakan Demir, et al., Generalized neural network model of alternative refrigerant (R600a) inside a smooth tube, International Communications in Heat and Mass Transfer, 36 (2009), pp. 744–749

42. Balcilar, M., et al., A generalized numerical correlation study for the determination of pressure drop during condensation and boiling of R134a inside smooth and corrugated tubes, International Communications in Heat and Mass Transfer, 49 (2013), pp. 78–85. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.08.010

43. Balcilar, M., A numerical correlation development study for the determination of Nusselt numbers during boiling and condensation of R134a inside smooth and corrugated tubes, International Communications in Heat and Mass Transfer, 48 (2013), pp. 141–145. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.08.012