Refrigeration Engineering and Technology

ISSN-print: 0453-8307
ISSN-online: 2409-6792
ISO: 26324:2012
Архiви

ПЛОТНОСТЬ И ВЯЗКОСТЬ РАСТВОРОВ ХЛАДАГЕНТ R600a / МИНЕРАЛЬНОЕ МАСЛО / ФУЛЛЕРЕНЫ С60

##plugins.themes.bootstrap3.article.main##

C. А. Мороз
Н. Н. Лукьянов
В. П. Железный

Анотація

В статье представлены результаты экспериментального исследования температурной и концентрационной зависимостей плотности и вязкости, растворов хладагент R600a/минеральное масло ХФ16-12/ фуллерены С60. Измерения плотности выполнены пикнометрическим методом в диапазоне температур 258-353 К. Вязкость измерена методом катящегося шарика в интервале температур 253-283 К. На основании полученных экспериментальных данных выполнен анализ влияния примесей компрессорного масла и фуллеренов С60 на плотность и вязкость хладагента R600a. Показано, что примеси фуллеренов способствуют понижению вязкости рабочего тела (хладагент R600a/минеральное масло ХФ16-12) во всем интервале параметров исследования. Рабочее тело - R600a/минеральное масло ХФ16-12/ фуллерены С60 рекомендуется для использования в бытовой холодильной технике. 
Ключові слова:
Для цієї мови відсутні ключові слова

##plugins.themes.bootstrap3.article.details##

Як цитувати
МорозC. А., Лукьянов, Н. Н., & Железный, В. П. (2017). ПЛОТНОСТЬ И ВЯЗКОСТЬ РАСТВОРОВ ХЛАДАГЕНТ R600a / МИНЕРАЛЬНОЕ МАСЛО / ФУЛЛЕРЕНЫ С60. Refrigeration Engineering and Technology, 53(1). https://doi.org/10.15673/ret.v53i1.544
Розділ
ХОЛОДИЛЬНІ ТА СУПУТНІ ТЕХНОЛОГІЇ

Посилання

1. Moroz, S.A. The influence of the compressor oil viscosity and fullerenes C60 additives in the oil on the energy efficiency of refrigeration compressor system [Text] / S.A. Moroz, O.Ya. Khlieva, N.N. Lukianov, V.P. Zhelezny // Vestnik of the International Academy of Refrigeration. - 2016. - № 41. - P. 41-46. (in Russian). doi: 10.21047/1606-4313-2016-16-1-41-46

2. Kedzierski, M.A. Effect of CuO Nanoparticle Con-centration on R134a-Lubricant Pool Boiling Heat Transfer [Text] / M.A. Kedzierski // Micro-Nanoscale Heat Transfer International Conference, 2008: Proceedings Taiwan – N. Y. – P.1–8. DOI: 10.1115/1.3072926

3. Azmi, M. Z. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system [Text] / W. H. Azmi, M. Z. Sharif, T. M. Yusof // Renew. Sust. Energ. Rev. – 2017. –Vol. Issue 69. – Р. 415–428. doi.org/10.1016/j.rser.2016.11.207

4. Wang, R. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants [Text] / R. Wang, Q. Wu, Y. Wu // Energy and Buildings. – 2010. – Vol. 42, Issue 11. –P.2111–2117. doi: 10.1016/j.enbuild.2010.06.023

5. Chen, H. Rheological behaviour of nanofluids [Text] / H. Chen, Y. Ding, C. Tan. // New Jornal of Physics. – 2007. – Vol. 9, Issue 367.P. –24. doi:10.1088/1367-2630/9/10/367

6. Zhu, D.S. Influence of SDBS on viscosity for alumin-ium nano-suspensions [Text] / D.S. Zhu, X.F. Li, J.W. Gao, X.J. Wang, H. Li, Z.J. Wu // International Congress of Refrigeration. – 2007. –P.1– 7.

7. Tavman, I. Experimental investigation of viscosity and thermal conductivity of suspensions containing na-nosized ceramic particles [Text] / I. Tavman, A. Turgut, M. Chirtoc, H.P. Schuchmann, S. Tavman // International Scientific Journal. – 2008. – Vol.34, Issue 2. – P. 99–104.

8. Guzey, D.V. Measurement of the heat transfer coeffi-cient of a nanofluid on the basis of copper oxide in a cylindrical channel [Text] / D.V. Guzey, A.V. Minakov, V. Ya. Rudyak, A.A. Dekterev // Letters in ZTF. - 2014. - Vol.40, Issue. 5.- P. 34-42. (in Russian).

9. Wang X. Thermal conductivity of nanoparticle–fluid mixture [Text] / X. Wang, X. Xu, S. Choi // J. Thermophys. Heat Transfer. – 1999. – Vol.13, Issue 4. – P. 474–480.

10. Anoop, K.B. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and parti-cle agglomeration [Text] / K.B. Anoop, S. Kabelac, T. Sundararajan, S.K. Das. // J. Appl. Phys. – 2009. Vol.106, Issue 3. – P. 0.34909. doi: 10.1063/1.3182807

11. Murshed Sohel, S.M. Investigations of thermal conductivity and viscosity of nanofluids [Text] / S.M.S. Murshed, K.C. Leong, С. Yang. // Int. J. Therm. Sci.– 2008. – Vol.47, Issue 5. – P. 560–568. doi: 10.1016/j.ijthermalsci.2007.05.004

12. Murshed Sohel, S.M. Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics [Text] / S.M.S. Murshed, S. Tan, N. Nguyen // Journal of Physics. – 2008. – Vol.41, Issue 8. – P. 1–5.

13. Chandrasekar M. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/ water nanofluid [Text]/ M. Chandra-sekar, S. Suresh, A. Chandra. // Exp. Therm. Fluid Sci. – 2010. – Vol.34, Issue 2. – P. 210–216. DOI:
10.1016/j.expthermflusci.2009.10.022

14. Timofeeva, E.V. Nanofluids for heat transfer: an engineering approach [Text] / E.V. Timofeeva, W. Yu, D.M. France, D. Singh, J.L. Routbort // Nanoscale Res. Lett. – 2011. – Vol. 6, Issue 182. – P. 1–7. DOI: 10.1186/1556-276X-6-182.

15. Prasher, R. Measurements of nanofluid viscosity and its implications for thermal applications [Text] / R. Prasher, D. Song, J. Wang, P. Phelan. // Appl. Phys. Lett. – 2006. – Vol. 89, Issue 13. – P. 133108. doi: 10.1063/1.2356113

16. Chen, H. Rheological behaviour of ethylene glycol based titania nanofluids [Text] / H. Chen, Y. Ding, Y. He, С. Tan. // Chem. Phys. Lett. – 2007. – Vol.444. – P. 333–337. doi: 10.1016/j.cplett.2007.07.046

17. Chen, H. Rheological behaviour of nanofluids [Text] / H. Chen, Y. Ding, C. Tan. // New J. Phys. – 2007. – Vol.9, Issue 367 – P. 1-24. doi: 10.1088/1367-2630/9/10/367

18. Kole, M. Viscosity of alumina nanoparticles dispersed in car engine coolant [Text] / M. Kole, T. Dey. // Exp. Therm. Fluid Sci. – 2010. – Vol.43, Issue 31 – P. 677–683. doi: 10.1016/j.expthermflusci.2009.12.009

19. Namburu, P. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids [Text] / P. Namburu, D. Kulkarni, A. Dandekar, D. Das. // Micro Nano Lett. – 2007. – Vol.2, Issue 3. – P. 67–71. doi: 10.1049/mnl:20070037

20. Namburu, P. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture [Text] / P. Namburu, D. Kulkarni, D. Misra, D. Das. // Exp. Therm. Fluid Sci. – 2007. – Vol. 32. – P. 397–402. DOI: 10.2298/TSCI140616025K

21. Garg, J. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid [Text] / J. Garg, B. Poudel, M. Chiesa. // J. Appl. Phys. – 2008. – Vol.103, Issue 7. – P. 1–6. DOI: 10.1063/1.2902483

22. Nguyen, C. Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon [Text] / C. Nguyen, F. Desgranges, G. Roy. // Int. J. Heat Fluid Flow. – 2007. – Vol. 28, Issue 6. – P. 1492–1506. doi: 10.1016/j.ijthermalsci.2008.03.009

23. He, Y. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe / Y. He, Y. Jin, H. Chen // Int. J. Heat Mass Transfer. – 2007. – Vol. 50. – P. 2272–2281. doi: 10.1016/j.ijheatmasstransfer.2006.10.024

24. Chevalier, J. Rheological properties of nanofluids flowing through microchannels [Text] / J. Chevalier, O. Tillement, F. Ayela. // Appl. Phys. Lett. – 2007. – Vol. 91. doi: http://dx.doi.org/10.1063/1.2821117

25. Pastoriza-Gallego, M. CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity [Text] / M.Pastoriza-Gallego, C. Casanova, J. Legido, M. Piñeiro. // Fluid Phase Equilib. – 2011. – Vol. 300. – P. 188–196. DOI: 10.1186/1556-276X-6-221

26. Lu, W. Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method [Text] / W. Lu, Q. Fan. // Eng. Anal. Boundary Elem. – 2008. – Vol. 32. – С. 282–289. doi: 10.1016/j.enganabound.2007.10.006

27. Nguyen, C. Viscosity data for Al2O3–water nanoflu-id—hysteresis: is heat transfer enhancement using nanofluids reliable [Text] / C. Nguyen, F. Desgranges, N. Galanis // Int J. Therm. Sci. – 2008. – Vol. 47, Issue 2. – С. 103–111. DOI: 10.1016/j.ijthermalsci.2007.01.033

28. Zhelezny, V.P. A complex investigation of the nanofluids R600а-mineral oilAl2O3 and R600а-mineral oil-TiO2. Thermophysical properties. [Text] / V.P. Zhelezny, N.N. Lukianov, O.Ya. Khliyeva, A. S. Nikulina, A.V. Melnyk // Int. J. Refrigeration. – 2008. – Vol. 74. – P. 486-502. doi: 10.1016/j.ijrefrig.2016.11.008

29. Nikulin, A.G. The experimental unit for investigation of pure liquids and solutions pool boiling process [Text] / A.G. Nikulin, Yu. V. Semenyuk, N.N. Lukianov. // Refrigeration technology and technology. - 2013. - Vol. 4, Issue 144. - P. 12-18. (in Russian).

30. Zhelezny, V.P. Methodical features of the experi-mental study of the processes of nanofluids pool boiling [Text] / V.P. Zhelezny, Yu. V. Semenyuk, A.G. Nikulin, N.N. Lukianov. // Vestnik of the International Academy of Refrigeration. - 2014. - Vol. 3. - P. 4-9. (in Russian).

31. Wang, R. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants [Text] / R. Wang, Q. Wu, Y. Wu. // Energy and Buildings. – 2010. – Vol. 42, Issue 11. – P. 2111–2117.
doi: 10.1016/j.enbuild.2010.06.023

32. Rudyak, V.Ya. Modern status of researches of nanofluids viscosity [Text] / V. Ya. Rudyak. // Bulletin of NGU. - 2015. - Vol.10, Issue 1. - P. 5-22. (in Russian).

33. Xiang-Qi, W. A Review on Nanofluids – Part I: Theoretical and Numerical Investigations [Text] / W. Xiang-Qi, S. Arun. // Brazilian Journal of Chemical Engineering. – 2008. – Vol.25, Issue 4. – P. 613–630.

34. Meibo, X. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator com-pressors [Text] / X. Meibo, W. Ruixiang, Y. Jianlin. // Int. J. Refrigeration. – 2014. – Vol.40. – P. 398–403. DOI: 10.1016/j.ijrefrig.2013.12.004